Using the Unscented Kalman Filter in Mono-SLAM with Inverse Depth Parametrization for Autonomous Airship Control

In this paper, we present an approach for aiding control of an autonomous airship by the means of SLAM. We show how the Unscented Kalman Filter can be applied in a SLAM context with monocular vision. The recently published Inverse Depth Parametrization is used for undelayed single-hypothesis landmark initialization and modelling. The novelty of the presented approach lies in the combination of UKF, Inverse Depth Parametrization and bearing-only SLAM and its application for autonomous airship control and UAV control in general.

[1]  Pedro U. Lima,et al.  Flugregler für ein autonomes Luftschiff , 2003, AMS.

[2]  J. S. Ortega Towards visual localization, mapping and moving objects tracking by a mobile robot : a geometric and probabilistic approach , 2007 .

[3]  Michel Devy,et al.  Undelayed initialization in bearing only SLAM , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[4]  Simon J. Julier,et al.  The scaled unscented transformation , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[5]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[6]  Peter Protzel,et al.  Verteiltes, dynamisches Antriebssystem zur Steuerung eines Luftschiffes , 2007 .

[7]  Javier Civera,et al.  Inverse Depth to Depth Conversion for Monocular SLAM , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[8]  Jacob Willem Langelaan State estimation for autonomous flight in cluttered environments , 2006 .

[9]  Clark F. Olson,et al.  Robust stereo ego-motion for long distance navigation , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[10]  Rudolph van der Merwe,et al.  Sigma-point kalman filters for probabilistic inference in dynamic state-space models , 2004 .

[11]  Simon J. Julier,et al.  The spherical simplex unscented transformation , 2003, Proceedings of the 2003 American Control Conference, 2003..

[12]  M. I. Ribeiro,et al.  The RESCUE Project Cooperative Navigation for Rescue Robots , 2003 .

[13]  Rudolph van der Merwe,et al.  Sigma-Point Kalman Filters for Integrated Navigation , 2004 .

[14]  Tom Drummond,et al.  Scalable Monocular SLAM , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[15]  Luc Van Gool,et al.  SURF: Speeded Up Robust Features , 2006, ECCV.

[16]  Michel Devy,et al.  BiCamSLAM: Two times mono is more than stereo , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[17]  Rudolph van der Merwe,et al.  The square-root unscented Kalman filter for state and parameter-estimation , 2001, 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221).

[18]  Andrew J. Davison,et al.  Real-time simultaneous localisation and mapping with a single camera , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[19]  Jeffrey K. Uhlmann,et al.  New extension of the Kalman filter to nonlinear systems , 1997, Defense, Security, and Sensing.

[20]  Stephen M. Rock,et al.  Relative position sensing by fusing monocular vision and inertial rate sensors , 2003 .

[21]  Larry H. Matthies,et al.  Error modeling in stereo navigation , 1986, IEEE J. Robotics Autom..

[22]  Niko Sünderhauf,et al.  FASTSLAM USING SURF FEATURES: AN EFFICIENT IMPLEMENTATION AND PRACTICAL EXPERIENCES , 2007 .

[23]  Olivier Stasse,et al.  MonoSLAM: Real-Time Single Camera SLAM , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  Javier Civera,et al.  Unified Inverse Depth Parametrization for Monocular SLAM , 2006, Robotics: Science and Systems.

[25]  J. Langelaan,et al.  Towards Autonomous UAV Flight in Forests , 2005 .