Organization of the SH3-SH2 unit in active and inactive forms of the c-Abl tyrosine kinase.

[1]  J. Kuriyan,et al.  High yield bacterial expression of active c‐Abl and c‐Src tyrosine kinases , 2005, Protein science : a publication of the Protein Society.

[2]  D. Fabbro,et al.  The crystal structure of a c-Src complex in an active conformation suggests possible steps in c-Src activation. , 2005, Structure.

[3]  P. Cole,et al.  Protein tyrosine kinases Src and Csk: a tail's tale. , 2003, Current opinion in chemical biology.

[4]  Dmitri I. Svergun,et al.  PRIMUS: a Windows PC-based system for small-angle scattering data analysis , 2003 .

[5]  Anna Westlund,et al.  Conformation of full‐length Bruton tyrosine kinase (Btk) from synchrotron X‐ray solution scattering , 2003, The EMBO journal.

[6]  A. Strife,et al.  Chronic myelogenous leukemia as a paradigm of early cancer and possible curative strategies , 2003, Leukemia.

[7]  G. Daley,et al.  Mechanisms of Autoinhibition and STI-571/Imatinib Resistance Revealed by Mutagenesis of BCR-ABL , 2003, Cell.

[8]  G. Superti-Furga,et al.  A Myristoyl/Phosphotyrosine Switch Regulates c-Abl , 2003, Cell.

[9]  G. Superti-Furga,et al.  Structural Basis for the Autoinhibition of c-Abl Tyrosine Kinase , 2003, Cell.

[10]  Satoru Takeuchi,et al.  Structure of the Carboxyl-terminal Src Kinase, Csk* , 2002, The Journal of Biological Chemistry.

[11]  C. Sawyers Disabling Abl-perspectives on Abl kinase regulation and cancer therapeutics. , 2002, Cancer cell.

[12]  G. Superti-Furga,et al.  Autoinhibition of c-Abl , 2002, Cell.

[13]  Yun Wu,et al.  Inhibition of the Bcr-Abl oncoprotein by Bcr requires phosphoserine 354. , 2002, Cancer research.

[14]  R. A. Etten,et al.  Mutational analysis of the regulatory function of the c-Abl Src homology 3 domain , 2001, Oncogene.

[15]  T. Hunter,et al.  Inhibition of c-Abl Tyrosine Kinase Activity by Filamentous Actin* , 2001, The Journal of Biological Chemistry.

[16]  D I Svergun,et al.  Determination of domain structure of proteins from X-ray solution scattering. , 2001, Biophysical journal.

[17]  John Kuriyan,et al.  Crystal structures of the kinase domain of c-Abl in complex with the small molecule inhibitors PD173955 and imatinib (STI-571). , 2001, Cancer research.

[18]  Giulio Superti-Furga,et al.  Dynamic Coupling between the SH2 and SH3 Domains of c-Src and Hck Underlies Their Inactivation by C-Terminal Tyrosine Phosphorylation , 2001, Cell.

[19]  M. Yaffe,et al.  Phosphoserine/threonine-binding domains. , 2001, Current opinion in cell biology.

[20]  Dmitri I. Svergun,et al.  Automated matching of high- and low-resolution structural models , 2001 .

[21]  R. V. van Etten,et al.  c-Abl Has High Intrinsic Tyrosine Kinase Activity That Is Stimulated by Mutation of the Src Homology 3 Domain and by Autophosphorylation at Two Distinct Regulatory Tyrosines* , 2000, The Journal of Biological Chemistry.

[22]  H. D. Showalter,et al.  Biochemical and cellular effects of c-Src kinase-selective pyrido[2, 3-d]pyrimidine tyrosine kinase inhibitors. , 2000, Biochemical pharmacology.

[23]  R. A. Etten Cycling, stressed-out and nervous: cellular functions of c-Abl , 1999 .

[24]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[25]  John Kuriyan,et al.  Crystal structure of the Src family tyrosine kinase Hck , 1997, Nature.

[26]  Michael J. Eck,et al.  Three-dimensional structure of the tyrosine kinase c-Src , 1997, Nature.

[27]  D. Svergun,et al.  CRYSOL : a program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates , 1995 .

[28]  D. Kassel,et al.  Characterization of pp60c-src tyrosine kinase activities using a continuous assay: autoactivation of the enzyme is an intermolecular autophosphorylation process. , 1995, Biochemistry.

[29]  R. Sakai,et al.  Evidence that SH2 domains promote processive phosphorylation by protein-tyrosine kinases , 1995, Current Biology.

[30]  J. Navaza,et al.  AMoRe: an automated package for molecular replacement , 1994 .

[31]  E. Medico,et al.  Phosphorylation of serine 985 negatively regulates the hepatocyte growth factor receptor kinase. , 1994, The Journal of biological chemistry.

[32]  Dmitri I. Svergun,et al.  Determination of the regularization parameter in indirect-transform methods using perceptual criteria , 1992 .

[33]  O. Witte,et al.  BCR sequences essential for transformation by the BCR-ABL oncogene bind to the ABL SH2 regulatory domain in a non-phosphotyrosine-dependent manner , 1991, Cell.

[34]  Florante A. Quiocho,et al.  Stabilization of charges on isolated ionic groups sequestered in proteins by polarized peptide units , 1987, Nature.

[35]  Jonathan A. Cooper,et al.  Protein kinase C phosphorylation of the EGF receptor at a threonine residue close to the cytoplasmic face of the plasma membrane , 1984, Nature.

[36]  W. T. Heller Influence of multiple well defined conformations on small-angle scattering of proteins in solution. , 2005, Acta crystallographica. Section D, Biological crystallography.

[37]  Oliver Hantschel,et al.  Regulation of the c-Abl and Bcr–Abl tyrosine kinases , 2004, Nature Reviews Molecular Cell Biology.

[38]  W. Delano The PyMOL Molecular Graphics System , 2002 .

[39]  A. Pendergast The Abl family kinases: mechanisms of regulation and signaling. , 2002, Advances in cancer research.

[40]  M. Wall,et al.  Large-scale shape changes in proteins and macromolecular complexes. , 2000, Annual review of physical chemistry.

[41]  Z. Otwinowski,et al.  [20] Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.