The Dirichlet problem for sublaplacians on nilpotent Lie groups —Geometric criteria for regularity
暂无分享,去创建一个
[1] B. Gaveau,et al. The Dirichlet Problem for the Subelliptic Laplacian on the Heisenberg Group II , 1985, Canadian Journal of Mathematics.
[2] R. Hervé,et al. Les fonctions surharmoniques dans l'axiomatique de M. Brelot associées à un opérateur elliptique dégénéré , 1972 .
[3] Paolo Negrini,et al. Wiener criterion for a class of degenerate elliptic operators , 1987 .
[4] H. Hueber. Wiener's criterion in potential theory with applications to nilpotent lie groups , 1985 .
[5] N. S. Landkof. Foundations of Modern Potential Theory , 1972 .
[6] B. Gaveau. Principe de moindre action, propagation de la chaleur et estimees sous elliptiques sur certains groupes nilpotents , 1977 .
[7] E. Stein,et al. Hypoelliptic differential operators and nilpotent groups , 1976 .
[8] John Taylor. POTENTIAL THEORY An Analytic and Probabilistic Approach to Balayage (Universitext) , 1987 .
[9] J. Bony. Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés , 1969 .
[10] F. Maeda. Energy of functions on a self-adjoint harmonic space. II , 1972 .
[11] A. Sánchez-Calle. Fundamental solutions and geometry of the sum of squares of vector fields , 1984 .
[12] A. Friedman,et al. Dirichlet problem for degenerate elliptic equations , 1973 .