Critical exponent for the Anderson transition in the three-dimensional orthogonal universality class

We report a careful finite size scaling study of the metal–insulator transition in Anderson's model of localization. We focus on the estimation of the critical exponent ν that describes the divergence of the localization length. We verify the universality of this critical exponent for three different distributions of the random potential: box, normal and Cauchy. Our results for the critical exponent are consistent with the measured values obtained in experiments on the dynamical localization transition in the quantum kicked rotor realized in a cold atomic gas.

[1]  Christina Kluge,et al.  Data Reduction And Error Analysis For The Physical Sciences , 2016 .

[2]  Yoshio Kuramoto,et al.  Criticality of the metal–topological insulator transition driven by disorder , 2013 .

[3]  I. Lyashenko,et al.  Statistical theory of the boundary friction of atomically flat solid surfaces in the presence of a lubricant layer , 2012 .

[4]  N. Trivedi,et al.  Conductor Insulator Quantum Phase Transitions , 2012 .

[5]  C. Kane,et al.  Topology, delocalization via average symmetry and the symplectic Anderson transition. , 2012, Physical review letters.

[6]  F. Evers,et al.  Finite-size effects and irrelevant corrections to scaling near the integer quantum Hall transition. , 2012, Physical review letters.

[7]  K. Slevin,et al.  CRITICAL EXPONENT FOR THE QUANTUM SPIN HALL TRANSITION IN ℤ2 NETWORK MODEL , 2011, 1201.0244.

[8]  P. Szriftgiser,et al.  Experimental test of universality of the Anderson transition. , 2011, Physical review letters.

[9]  C. Beenakker,et al.  Topological quantum number and critical exponent from conductance fluctuations at the quantum Hall plateau transition , 2011, 1110.4280.

[10]  R. Roemer,et al.  Multifractal finite-size scaling and universality at the Anderson transition , 2011, 1107.5736.

[11]  C. Beenakker,et al.  Quantum Hall effect in a one-dimensional dynamical system , 2011, 1106.5514.

[12]  Armenia,et al.  Numerical study of the localization length critical index in a network model of plateau-plateau transitions in the quantum Hall effect. , 2009, Physical review letters.

[13]  E. Abrahams 50 Years of Anderson Localization , 2010 .

[14]  R. Römer,et al.  Critical parameters from a generalized multifractal analysis at the Anderson transition. , 2010, Physical review letters.

[15]  A. Ludwig,et al.  Conformal invariance, multifractality, and finite-size scaling at Anderson localization transitions in two dimensions , 2009, 0911.5443.

[16]  K. Slevin,et al.  Critical exponent for the quantum Hall transition , 2009, 0905.1163.

[17]  K. West,et al.  Scaling in plateau-to-plateau transition: a direct connection of quantum hall systems with the Anderson localization model. , 2009, Physical review letters.

[18]  R. Römer,et al.  Multifractal analysis with the probability density function at the three-dimensional anderson transition. , 2008, Physical review letters.

[19]  Julien Chabé,et al.  Experimental observation of the Anderson metal-insulator transition with atomic matter waves. , 2007, Physical review letters.

[20]  A. Garcı́a-Garcı́a Semiclassical theory of the Anderson transition. , 2007, Physical review letters.

[21]  A. Mirlin,et al.  Anderson Transitions , 2007, 0707.4378.

[22]  H. Obuse,et al.  Two-dimensional spin-filtered chiral network model for the Z 2 quantum spin-Hall effect , 2007, cond-mat/0702199.

[23]  Y. Avishai,et al.  Localization in a quantum spin Hall system. , 2006, Physical review letters.

[24]  Shou-Cheng Zhang,et al.  Quantum spin Hall effect. , 2005, Physical review letters.

[25]  C. Kane,et al.  Z2 topological order and the quantum spin Hall effect. , 2005, Physical review letters.

[26]  Anderson Transition in the Three Dimensional Symplectic Universality Class , 2004, cond-mat/0410190.

[27]  K. Slevin,et al.  Numerical estimation of the β function in two-dimensional systems with spin-orbit coupling , 2004, cond-mat/0404630.

[28]  L. Deych,et al.  Fluctuations of the Lyapunov exponent in two-dimensional disordered systems , 2004, cond-mat/0404530.

[29]  A. Kawabata On the Critical Exponent of the Anderson Transition , 2003 .

[30]  K. Slevin,et al.  Anderson transition in two-dimensional systems with spin-orbit coupling. , 2002, Physical review letters.

[31]  K. Slevin,et al.  Numerical verification of universality for the Anderson transition , 2001, cond-mat/0101272.

[32]  K. Slevin,et al.  CORRECTIONS TO SCALING AT THE ANDERSON TRANSITION , 1998, cond-mat/9812065.

[33]  K. Slevin,et al.  THE ANDERSON TRANSITION : TIME REVERSAL SYMMETRY AND UNIVERSALITY , 1997, cond-mat/9704192.

[34]  A. Altland,et al.  Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures , 1996, cond-mat/9602137.

[35]  M. Zirnbauer Riemannian symmetric superspaces and their origin in random‐matrix theory , 1996, math-ph/9808012.

[36]  P. Sheng,et al.  Introduction to Wave Scattering, Localization and Mesoscopic Phenomena. Second edition , 1995 .

[37]  Claude Brezinski,et al.  Numerical recipes in Fortran (The art of scientific computing) : W.H. Press, S.A. Teukolsky, W.T. Vetterling and B.P. Flannery, Cambridge Univ. Press, Cambridge, 2nd ed., 1992. 963 pp., US$49.95, ISBN 0-521-43064-X.☆ , 1993 .

[38]  R. Gade Anderson localization for sublattice models , 1993 .

[39]  J. Pendry,et al.  Universality classes and fluctuations in disordered systems , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[40]  F. Wegner,et al.  The n = 0 replica limit of U(n) and U(n)SO(n) models☆ , 1991 .

[41]  F. Haake Quantum signatures of chaos , 1991 .

[42]  F. Wegner Four-loop-order -function of nonlinear s-models in symmetric spaces , 1989 .

[43]  Shepelyansky,et al.  Anderson transition in a one-dimensional system with three incommensurate frequencies. , 1989, Physical review letters.

[44]  William H. Press,et al.  Book-Review - Numerical Recipes in Pascal - the Art of Scientific Computing , 1989 .

[45]  Paul Coddington,et al.  Percolation, quantum tunnelling and the integer Hall effect , 1988 .

[46]  W. Bernreuther,et al.  Four-loop―order β function for two-dimensional nonlinear sigma models , 1986 .

[47]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[48]  A. MacKinnon,et al.  The scaling theory of electrons in disordered solids: Additional numerical results , 1983 .

[49]  A. MacKinnon,et al.  One-Parameter Scaling of Localization Length and Conductance in Disordered Systems , 1981 .

[50]  C. Uher Pressure enhancement of the electrical conductivity of graphite intercalation compounds , 1981 .

[51]  S. Hikami,et al.  Anderson localization in a nonlinear-sigma-model representation , 1981 .

[52]  J. Pichard,et al.  Finite size scaling approach to Anderson localisation , 1981 .

[53]  C. A. Murray,et al.  Scaling Theory of Localization: Absence of Quantum Diffusion in Two Dimensions , 1979 .

[54]  P. Anderson Absence of Diffusion in Certain Random Lattices , 1958 .