Intercomparison of fraction of absorbed photosynthetically active radiation products derived from satellite data over Europe

[1]  Jean-Luc Widlowski,et al.  On the bias of instantaneous FAPAR estimates in open-canopy forests. , 2010 .

[2]  E. Vermote,et al.  Investigation of Product Accuracy as a Function of Input and Model Uncertainties: Case Study with Se , 2001 .

[3]  S. Running,et al.  Synergistic algorithm for estimating vegetation canopy leaf area index and fraction of absorbed photosynthetically active , 1998 .

[4]  S. Seneviratne,et al.  Climate extremes and the carbon cycle , 2013, Nature.

[5]  C. Woodcock,et al.  Evaluation of the MODIS LAI algorithm at a coniferous forest site in Finland , 2004 .

[6]  N. Gobron,et al.  An automatic procedure to identify key vegetation phenology events using the JRC-FAPAR products , 2008 .

[7]  Jerry Y. Pan,et al.  Intercomparison of MODIS albedo retrievals and in situ measurements across the global FLUXNET network , 2012 .

[8]  R. Dickinson,et al.  A physical model for predicting bidirectional reflectances over bare soil , 1989 .

[9]  Klaus Scipal,et al.  Theoretical uncertainty analysis of global MODIS, CYCLOPES, and GLOBCARBON LAI products using a triple collocation method , 2012 .

[10]  N. Gobron,et al.  Evaluation of the MERIS/ENVISAT FAPAR product , 2007 .

[11]  C. A. Hernández,et al.  Effects of training data distribution on backpropagation generalization , 1993, 1993 IEEE International Symposium on Circuits and Systems.

[12]  C. Long,et al.  SURFRAD—A National Surface Radiation Budget Network for Atmospheric Research , 2000 .

[13]  R. Fensholt,et al.  Evaluation of MODIS LAI, fAPAR and the relation between fAPAR and NDVI in a semi-arid environment using in situ measurements , 2004 .

[14]  Nadine Gobron,et al.  An Earth Observation Land Data Assimilation System (EO-LDAS) , 2012 .

[15]  N. Gobron,et al.  The MERIS Global Vegetation Index (MGVI): Description and preliminary application , 1999 .

[16]  Jing M. Chen,et al.  Canopy architecture and remote sensing of the fraction of photosynthetically active radiation absorbed by boreal conifer forests , 1996, IEEE Trans. Geosci. Remote. Sens..

[17]  Nadine Gobron,et al.  Exploiting the MODIS albedos with the Two-stream Inversion Package (JRC-TIP): 1. Effective leaf area index, vegetation, and soil properties , 2011 .

[18]  E. Boyle,et al.  The global carbon cycle: a test of our knowledge of earth as a system. , 2000, Science.

[19]  R. Fensholt,et al.  Evaluation of earth observation based long term vegetation trends - Intercomparing NDVI time series trend analysis consistency of Sahel from AVHRR GIMMS, Terra MODIS and SPOT VGT data , 2009 .

[20]  N. Gobron,et al.  The state of vegetation in Europe following the 2003 drought , 2005 .

[21]  Frédéric Baret,et al.  A multisensor fusion approach to improve LAI time series , 2011 .

[22]  Ranga B. Myneni,et al.  Analysis of leaf area index and fraction of PAR absorbed by vegetation products from the terra MODIS sensor: 2000-2005 , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[23]  Christopher B. Field,et al.  Initiative to quantify terrestrial carbon sources and sinks , 2002 .

[24]  H. Rahman,et al.  Coupled surface‐atmosphere reflectance (CSAR) model: 1. Model description and inversion on synthetic data , 1993 .

[25]  Jean-Luc Widlowski,et al.  Third Radiation Transfer Model Intercomparison (RAMI) exercise: Documenting progress in canopy reflectance models , 2007 .

[26]  R. Dickinson,et al.  Simplifying the Interaction of Land Surfaces with Radiation for Relating Remote Sensing Products to Climate Models , 2006 .

[27]  F. Baret,et al.  Review of methods for in situ leaf area index (LAI) determination: Part II. Estimation of LAI, errors and sampling , 2004 .

[28]  Michele Meroni,et al.  Evaluation of Agreement Between Space Remote Sensing SPOT-VEGETATION fAPAR Time Series , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[29]  F. Baret,et al.  LAI and fAPAR CYCLOPES global products derived from VEGETATION. Part 2: validation and comparison with MODIS collection 4 products , 2007 .

[30]  Frédéric Baret,et al.  Validation of global moderate-resolution LAI products: a framework proposed within the CEOS land product validation subgroup , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[31]  Gobron Nadine,et al.  Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) , 2010 .

[32]  Saleh Abdalla,et al.  Error Estimation of Buoy, Satellite, and Model Wave Height Data , 2007 .

[33]  F. Baret,et al.  Performances of neural networks for deriving LAI estimates from existing CYCLOPES and MODIS products , 2008 .

[34]  S. Goward,et al.  Global Primary Production: A Remote Sensing Approach , 1995 .

[35]  W. Oechel,et al.  FLUXNET: A New Tool to Study the Temporal and Spatial Variability of Ecosystem-Scale Carbon Dioxide, Water Vapor, and Energy Flux Densities , 2001 .

[36]  A. Stoffelen Toward the true near-surface wind speed: Error modeling and calibration using triple collocation , 1998 .

[37]  S. Caires,et al.  Validation of ocean wind and wave data using triple collocation , 2003 .

[38]  Ranga B. Myneni,et al.  A new parameterization of canopy spectral response to incident solar radiation: case study with hyperspectral data from pine dominant forest , 2003 .

[39]  Bernard Pinty,et al.  Evaluation of the JRC-TIP 0.01° products over a mid-latitude deciduous forest site , 2011 .

[40]  N. Gobron,et al.  Uncertainty Estimates for the FAPAR Operational Products Derived from MERIS - Impact of Top-of-Atmosphere Radiance Uncertainties and Validation with Field Data , 2008 .

[41]  F. Baret,et al.  Estimating Canopy Characteristics from Remote Sensing Observations: Review of Methods and Associated Problems , 2008 .

[42]  Nadine Gobron,et al.  Partitioning the Solar Radiant Fluxes in Forest Canopies in the Presence of Snow , 2008 .

[43]  F. Baret,et al.  PROSPECT: A model of leaf optical properties spectra , 1990 .

[44]  Nadine Gobron,et al.  Exploiting the MODIS albedos with the Two‐stream Inversion Package (JRC‐TIP): 2. Fractions of transmitted and absorbed fluxes in the vegetation and soil layers , 2011 .

[45]  Ranga B. Myneni,et al.  Time‐series validation of MODIS land biophysical products in a Kalahari woodland, Africa , 2005 .

[46]  Philip Lewis,et al.  Canopy spectral invariants for remote sensing and model applications , 2007 .

[47]  Klaus Scipal,et al.  A possible solution for the problem of estimating the error structure of global soil moisture data sets , 2008 .

[48]  Scott J. Goetz,et al.  Products in Boreal Forests of Alaska , 2006 .

[49]  H. Dolman,et al.  Terrestrial essential climate variables for climate change assessment, mitigation and adaptation (GTOS 52) , 2008 .

[50]  K. Baker,et al.  Evolution of a Multisite Network Information System: The LTER Information Management Paradigm , 2000 .

[51]  R. Giering,et al.  Two decades of terrestrial carbon fluxes from a carbon cycle data assimilation system (CCDAS) , 2005 .

[52]  Nuno Carvalhais,et al.  Comparative analysis of MODIS-FAPAR and MERIS-MGVI datasets: potential impacts on ecosystem modeling. , 2009 .

[53]  Gregory P. Asner,et al.  SCALE DEPENDENCE OF ABSORPTION OF PHOTOSYNTHETICALLY ACTIVE RADIATION IN TERRESTRIAL ECOSYSTEMS , 1998 .

[54]  W. Crow,et al.  Estimating Spatial Sampling Errors in Coarse-Scale Soil Moisture Estimates Derived from Point-Scale Observations , 2010 .

[55]  N. Gobron,et al.  A semidiscrete model for the scattering of light by vegetation , 1997 .

[56]  R. Giering,et al.  Retrieving surface parameters for climate models from Moderate Resolution Imaging Spectroradiometer (MODIS)-Multiangle Imaging Spectroradiometer (MISR) Albedo Products , 2007 .

[57]  Nicholas C. Coops,et al.  The development of a Canadian dynamic habitat index using multi-temporal satellite estimates of canopy light absorbance , 2008 .

[58]  Yosio Edemir Shimabukuro,et al.  Fraction of photosynthetically active radiation absorbed by Amazon tropical forest: A comparison of field measurements, modeling, and remote sensing , 2005 .

[59]  S. Nilsson,et al.  Comparison of four global FAPAR datasets over Northern Eurasia for the year 2000 , 2010 .

[60]  Alemu Gonsamo,et al.  Sampling gap fraction and size for estimating leaf area and clumping indices from hemispherical photographs , 2010 .

[61]  S. Running,et al.  Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data , 2002 .

[62]  S. Nilsson,et al.  Satellite-based terrestrial production efficiency modeling , 2009, Carbon balance and management.

[63]  Didier Tanré,et al.  Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: an overview , 1997, IEEE Trans. Geosci. Remote. Sens..

[64]  Maosheng Zhao,et al.  A Continuous Satellite-Derived Measure of Global Terrestrial Primary Production , 2004 .

[65]  D. Diner,et al.  Performance of the MISR LAI and FPAR algorithm: a case study in Africa , 2003 .

[66]  Aleixandre Verger,et al.  ntercomparison and quality assessment of MERIS , MODIS and SEVIRI FAPAR roducts over the Iberian Peninsula , 2012 .

[67]  S. T. Gower,et al.  Direct and Indirect Estimation of Leaf Area Index, fAPAR, and Net Primary Production of Terrestrial Ecosystems , 1999 .

[68]  Jing M. Chen,et al.  Land surface phenology from optical satellite measurement and CO2 eddy covariance technique , 2012 .