Braiding by Majorana tracking and long-range CNOT gates with color codes

Color-code quantum computation seamlessly combines Majorana-based hardware with topological error correction. Specifically, as Clifford gates are transversal in two-dimensional color codes, they enable the use of the Majoranas' non-Abelian statistics for gate operations at the code level. Here, we discuss the implementation of color codes in arrays of Majorana nanowires that avoid branched networks such as T junctions, thereby simplifying their realization. We show that, in such implementations, non-Abelian statistics can be exploited without ever performing physical braiding operations. Physical braiding operations are replaced by Majorana tracking, an entirely software-based protocol which appropriately updates the Majoranas involved in the color-code stabilizer measurements. This approach minimizes the required hardware operations for single-qubit Clifford gates. For Clifford completeness, we combine color codes with surface codes, and use color-to-surface-code lattice surgery for long-range multitarget CNOT gates which have a time overhead that grows only logarithmically with the physical distance separating control and target qubits. With the addition of magic state distillation, our architecture describes a fault-tolerant universal quantum computer in systems such as networks of tetrons, hexons, or Majorana box qubits, but can also be applied to nontopological qubit platforms.

[1]  B. Terhal,et al.  Roads towards fault-tolerant universal quantum computation , 2016, Nature.

[2]  C. Marcus,et al.  Milestones toward Majorana-based quantum computing , 2015, 1511.05153.

[3]  S. Das Sarma,et al.  Majorana fermions and a topological phase transition in semiconductor-superconductor heterostructures. , 2010, Physical review letters.

[4]  C. W. J. Beenakker,et al.  Flux-controlled quantum computation with Majorana fermions , 2013, 1303.4379.

[5]  E. Bakkers,et al.  Signatures of Majorana Fermions in Hybrid Superconductor-Semiconductor Nanowire Devices , 2012, Science.

[6]  L. Fu,et al.  Superconducting proximity effect and majorana fermions at the surface of a topological insulator. , 2007, Physical review letters.

[7]  M. Freedman,et al.  Scalable designs for quasiparticle-poisoning-protected topological quantum computation with Majorana zero modes , 2016, 1610.05289.

[8]  R. Egger,et al.  Majorana box qubits , 2016, 1609.01697.

[9]  Liang Fu,et al.  Quantum Error Correction for Complex and Majorana Fermion Qubits , 2017, 1703.00459.

[10]  J. Preskill,et al.  Topological quantum memory , 2001, quant-ph/0110143.

[11]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[12]  Simon J. Devitt,et al.  Software-based Pauli tracking in fault-tolerant quantum circuits , 2014, 2014 Design, Automation & Test in Europe Conference & Exhibition (DATE).

[13]  C. Marcus,et al.  Transport Signatures of Quasiparticle Poisoning in a Majorana Island. , 2016, Physical review letters.

[14]  L. Landau Fault-tolerant quantum computation by anyons , 2003 .

[15]  Isaac H. Kim,et al.  The surface code with a twist , 2016, 1612.04795.

[16]  B. Terhal Quantum error correction for quantum memories , 2013, 1302.3428.

[17]  Austin G. Fowler,et al.  Surface code quantum computing by lattice surgery , 2011, 1111.4022.

[18]  D. Gottesman The Heisenberg Representation of Quantum Computers , 1998, quant-ph/9807006.

[19]  D. DiVincenzo,et al.  Majorana Braiding with Thermal Noise. , 2015, Physical review letters.

[20]  A. Altland,et al.  Towards Realistic Implementations of a Majorana Surface Code. , 2015, Physical review letters.

[21]  Leo P. Kouwenhoven,et al.  One minute parity lifetime of a NbTiN Cooper-pair transistor , 2015, Nature Physics.

[22]  Andrew J. Landahl,et al.  Fault-tolerant quantum computing with color codes , 2011, 1108.5738.

[23]  Y. Oreg,et al.  Zero-bias peaks and splitting in an Al–InAs nanowire topological superconductor as a signature of Majorana fermions , 2012, Nature Physics.

[24]  Liang Fu,et al.  Majorana Fermion Surface Code for Universal Quantum Computation , 2015, 1504.01724.

[25]  S. Simon,et al.  Non-Abelian Anyons and Topological Quantum Computation , 2007, 0707.1889.

[26]  Nicolai Friis,et al.  Fault-tolerant interface between quantum memories and quantum processors , 2016, Nature Communications.

[27]  David Poulin,et al.  Fast decoders for topological quantum codes. , 2009, Physical review letters.

[28]  S. Sarma,et al.  A Practical Phase Gate for Producing Bell Violations in Majorana Wires , 2015, 1510.00007.

[29]  C. Beenakker,et al.  Coulomb-assisted braiding of Majorana fermions in a Josephson junction array , 2011, 1111.6001.

[30]  C. Marcus,et al.  Zero-Energy Modes from Coalescing Andreev States in a Two-Dimensional Semiconductor-Superconductor Hybrid Platform. , 2017, Physical review letters.

[31]  G. Refael,et al.  Non-Abelian statistics and topological quantum information processing in 1D wire networks , 2010, 1006.4395.

[32]  C. Marcus,et al.  Majorana bound state in a coupled quantum-dot hybrid-nanowire system , 2016, Science.

[33]  J. Preskill Reliable quantum computers , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[34]  Michael H. Freedman,et al.  Universal Geometric Path to a Robust Majorana Magic Gate , 2015, 1511.05161.

[35]  C. M. Marcus,et al.  Exponential protection of zero modes in Majorana islands , 2016, Nature.

[36]  C. Beenakker,et al.  Search for Majorana Fermions in Superconductors , 2011, 1112.1950.

[37]  Matthew B. Hastings Small Majorana fermion codes , 2017, Quantum Inf. Comput..

[38]  Fernando Pastawski,et al.  Unfolding the color code , 2015, 1503.02065.

[39]  L. Fu,et al.  Teleportation-based quantum information processing with Majorana zero modes , 2016, 1609.00950.

[40]  M. Freedman,et al.  Measurement-only topological quantum computation. , 2008, Physical review letters.

[41]  M. Mariantoni,et al.  Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.

[42]  H. Bombin,et al.  Topological quantum distillation. , 2006, Physical review letters.

[43]  D. Loss,et al.  Majorana qubit decoherence by quasiparticle poisoning , 2012, 1204.3326.

[44]  A. Kitaev,et al.  Universal quantum computation with ideal Clifford gates and noisy ancillas (14 pages) , 2004, quant-ph/0403025.

[45]  A. Altland,et al.  Roadmap to Majorana surface codes , 2016, 1606.08408.

[46]  Daniel Litinski,et al.  Lattice Surgery with a Twist: Simplifying Clifford Gates of Surface Codes , 2017, 1709.02318.

[47]  C. M. Marcus,et al.  Parity lifetime of bound states in a proximitized semiconductor nanowire , 2015, Nature Physics.

[48]  Jason Alicea,et al.  New directions in the pursuit of Majorana fermions in solid state systems , 2012, Reports on progress in physics. Physical Society.

[49]  G. Refael,et al.  Helical liquids and Majorana bound states in quantum wires. , 2010, Physical review letters.

[50]  Matthew B. Hastings,et al.  Reduced space-time and time costs Ising dislocation codes and arbitrary ancillas , 2014, Quantum Inf. Comput..

[51]  Andrew J. Landahl,et al.  Quantum computing by color-code lattice surgery , 2014, 1407.5103.

[52]  H. Bombin,et al.  Topological order with a twist: Ising anyons from an Abelian model. , 2010, Physical review letters.

[53]  S. Vijay,et al.  Physical implementation of a Majorana fermion surface code for fault-tolerant quantum computation , 2015, 1509.08134.

[54]  Barbara M. Terhal,et al.  Majorana fermion codes , 2010, 1004.3791.