Neurobiology of glaucomatous optic neuropathy

[1]  S. Hayreh Inter-individual variation in blood supply of the optic nerve head , 1985, Documenta Ophthalmologica.

[2]  H. Grossniklaus Adult-onset primary open-angle glaucoma caused by mutations in optineurin.Rezaie T, Child A, Hitchings R, Brice G, Miller L, Coca-Prados M, Heon E, Krupin T, Ritch R, Kreutzer D, Crick RP, Sarfarzi M.∗ Science 2002;295:1077–1079. , 2002 .

[3]  D. Zack,et al.  Caspase activation and amyloid precursor protein cleavage in rat ocular hypertension. , 2002, Investigative ophthalmology & visual science.

[4]  Lin Wang,et al.  Immunohistologic evidence for retinal glial cell changes in human glaucoma. , 2002, Investigative ophthalmology & visual science.

[5]  R. Ritch,et al.  Adult-Onset Primary Open-Angle Glaucoma Caused by Mutations in Optineurin , 2002, Science.

[6]  M. Wax,et al.  TNF-alpha and TNF-alpha receptor-1 in the retina of normal and glaucomatous eyes. , 2001, Investigative ophthalmology & visual science.

[7]  M. Schwartz,et al.  Protective autoimmunity: regulation and prospects for vaccination after brain and spinal cord injuries. , 2001, Trends in molecular medicine.

[8]  M. Kass,et al.  Clinical factors associated with progression of glaucomatous optic disc damage in treated patients. , 2001, Archives of ophthalmology.

[9]  J. Caprioli,et al.  Induction of heat shock protein 72 protects retinal ganglion cells in a rat glaucoma model. , 2001, Investigative ophthalmology & visual science.

[10]  H. Weiner,et al.  Protective Autoimmunity Is a Physiological Response to CNS Trauma , 2001, The Journal of Neuroscience.

[11]  M. Wax,et al.  In vitro evaluation of reactive astrocyte migration, a component of tissue remodeling in glaucomatous optic nerve head , 2001, Glia.

[12]  M. Wax,et al.  Serum autoantibody against glutathione S-transferase in patients with glaucoma. , 2001, Investigative ophthalmology & visual science.

[13]  W. Tatton,et al.  Maintaining mitochondrial membrane impermeability. an opportunity for new therapy in glaucoma? , 2001, Survey of ophthalmology.

[14]  M. Wax,et al.  T cell subsets and sIL-2R/IL-2 levels in patients with glaucoma. , 2001, American journal of ophthalmology.

[15]  S. D'Anna,et al.  Optic nerve transection in monkeys may result in secondary degeneration of retinal ganglion cells. , 2001, Investigative ophthalmology & visual science.

[16]  C. S. Ricard,et al.  Expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases in human optic nerve head astrocytes , 2001, Glia.

[17]  Jianfei Yang,et al.  Induction of HLA-DR expression in human lamina cribrosa astrocytes by cytokines and simulated ischemia. , 2001, Investigative ophthalmology & visual science.

[18]  M. Wax,et al.  Increased Production of Tumor Necrosis Factor-a by Glial Cells Exposed to Simulated Ischemia or Elevated Hydrostatic Pressure Induces Apoptosis in Cocultured Retinal Ganglion Cells , 2000 .

[19]  A. Neufeld,et al.  Tumor necrosis factor‐α: A potentially neurodestructive cytokine produced by glia in the human glaucomatous optic nerve head , 2000 .

[20]  D. Zurakowski,et al.  Depression of retinal glutamate transporter function leads to elevated intravitreal glutamate levels and ganglion cell death. , 2000, Investigative ophthalmology & visual science.

[21]  R. Swanson,et al.  Astrocyte glutamate transport: Review of properties, regulation, and physiological functions , 2000, Glia.

[22]  W. Tatton,et al.  Retinal damage after 3 to 4 months of elevated intraocular pressure in a rat glaucoma model. , 2000, Investigative ophthalmology & visual science.

[23]  J. Bajramovic,et al.  Differential expression of stress proteins in human adult astrocytes in response to cytokines , 2000, Journal of Neuroimmunology.

[24]  M. Kass,et al.  Concordance of parapapillary chorioretinal atrophy in ocular hypertension with visual field defects that accompany glaucoma development. , 2000, Ophthalmology.

[25]  Y. Ng,et al.  An immunohistochemical study of neuronal and glial cell reactions in retinae of rats with experimental glaucoma , 2000, Experimental Brain Research.

[26]  Yoko Ikeda,et al.  Retinal ganglion cells recognized by serum autoantibody against gamma-enolase found in glaucoma patients. , 2000, Investigative ophthalmology & visual science.

[27]  M. Wax,et al.  The Mechanisms of hsp27 Antibody-Mediated Apoptosis in Retinal Neuronal Cells , 2000, The Journal of Neuroscience.

[28]  M. Wax,et al.  Matrix metalloproteinases and tumor necrosis factor α in glaucomatous optic nerve head , 2000 .

[29]  M. Hernandez The optic nerve head in glaucoma: role of astrocytes in tissue remodeling , 2000, Progress in Retinal and Eye Research.

[30]  J. Min,et al.  Role of small heat shock protein HSP25 in radioresistance and glutathione‐redox cycle , 2000, Journal of cellular physiology.

[31]  M. Wax,et al.  Immunostaining of heat shock proteins in the retina and optic nerve head of normal and glaucomatous eyes. , 2000, Archives of ophthalmology.

[32]  D. Zack,et al.  Obstructed axonal transport of BDNF and its receptor TrkB in experimental glaucoma. , 2000, Investigative ophthalmology & visual science.

[33]  M. Raff,et al.  Evidence That Wallerian Degeneration and Localized Axon Degeneration Induced by Local Neurotrophin Deprivation Do Not Involve Caspases , 2000, The Journal of Neuroscience.

[34]  C. Culmsee,et al.  Roles of Nuclear Factor κB in Neuronal Survival and Plasticity , 2000 .

[35]  L. Yuan,et al.  Tumor necrosis factor-alpha: a potentially neurodestructive cytokine produced by glia in the human glaucomatous optic nerve head. , 2000, Glia.

[36]  C. Culmsee,et al.  Roles of nuclear factor kappaB in neuronal survival and plasticity. , 2000, Journal of neurochemistry.

[37]  C. Arrowsmith Structure and function in the p53 family , 1999, Cell Death and Differentiation.

[38]  L. Levin,et al.  'Axogenic' and 'somagenic' neurodegenerative diseases: definitions and therapeutic implications. , 1999, Molecular medicine today.

[39]  X. W. Wang Role of p53 and apoptosis in carcinogenesis. , 1999, Anticancer research.

[40]  M. Wax,et al.  Inhibition of caspase activity in retinal cell apoptosis induced by various stimuli in vitro. , 1999, Investigative ophthalmology & visual science.

[41]  B Becker,et al.  Inhibition of nitric-oxide synthase 2 by aminoguanidine provides neuroprotection of retinal ganglion cells in a rat model of chronic glaucoma. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[42]  A. Neufeld Microglia in the optic nerve head and the region of parapapillary chorioretinal atrophy in glaucoma. , 1999, Archives of ophthalmology.

[43]  M. Wax,et al.  Serum autoantibodies to optic nerve head glycosaminoglycans in patients with glaucoma. , 1999, Archives of ophthalmology.

[44]  R. Nickells Apoptosis of retinal ganglion cells in glaucoma: an update of the molecular pathways involved in cell death. , 1999, Survey of ophthalmology.

[45]  L. Levin,et al.  Direct and indirect approaches to neuroprotective therapy of glaucomatous optic neuropathy. , 1999, Survey of ophthalmology.

[46]  L. Kagemann,et al.  Vascular aspects in the pathophysiology of glaucomatous optic neuropathy. , 1999, Survey of ophthalmology.

[47]  M. Wax,et al.  Epitope mapping of anti-rhodopsin antibodies from patients with normal pressure glaucoma. , 1999, Investigative ophthalmology & visual science.

[48]  C. L. Schlamp,et al.  Experimental induction of retinal ganglion cell death in adult mice. , 1999, Investigative ophthalmology & visual science.

[49]  D. Vaux,et al.  Signalling by CD95 and TNF receptors: Not only life and death , 1999, Immunology and cell biology.

[50]  M. Wax,et al.  Density-dependent resistance to apoptosis in retinal cells. , 1999, Current eye research.

[51]  M. Wax,et al.  Autoantibodies to small heat shock proteins in glaucoma. , 1998, Investigative ophthalmology & visual science.

[52]  D. Hopkins,et al.  Induction of the 27-kDa Heat Shock Protein (Hsp27) in the Rat Medulla Oblongata after Vagus Nerve Injury , 1998, Experimental Neurology.

[53]  Michal Schwartz,et al.  Degeneration of Spared Axons Following Partial White Matter Lesion: Implications for Optic Nerve Neuropathies , 1998, Experimental Neurology.

[54]  M. Wax,et al.  Clinical and ocular histopathological findings in a patient with normal-pressure glaucoma. , 1998, Archives of ophthalmology.

[55]  R. Coggeshall,et al.  Heat Shock Protein 27: Developmental Regulation and Expression after Peripheral Nerve Injury , 1998, The Journal of Neuroscience.

[56]  M. Wax,et al.  Anti-Ro/SS-A positivity and heat shock protein antibodies in patients with normal-pressure glaucoma. , 1998, American journal of ophthalmology.

[57]  M. Han,et al.  Overexpression of HSP25 reduces the level of TNFα‐induced oxidative DNA damage biomarker, 8‐hydroxy‐2′‐deoxyguanosine, in L929 cells , 1998, Journal of cellular physiology.

[58]  P. Mehlen,et al.  Large unphosphorylated aggregates as the active form of hsp27 which controls intracellular reactive oxygen species and glutathione levels and generates a protection against TNFalpha in NIH-3T3-ras cells. , 1997, Biochemical and biophysical research communications.

[59]  S. K. Malhotra,et al.  Reactive astrocytes: cellular and molecular cues to biological function , 1997, Trends in Neurosciences.

[60]  S. Srinivasula,et al.  Cytochrome c and dATP-Dependent Formation of Apaf-1/Caspase-9 Complex Initiates an Apoptotic Protease Cascade , 1997, Cell.

[61]  L. Levin,et al.  Identification of the bcl-2 family of genes in the rat retina. , 1997, Investigative ophthalmology & visual science.

[62]  Xiaodong Wang,et al.  Apaf-1, a Human Protein Homologous to C. elegans CED-4, Participates in Cytochrome c–Dependent Activation of Caspase-3 , 1997, Cell.

[63]  D. Zack,et al.  TUNEL-positive ganglion cells in human primary open-angle glaucoma. , 1997, Archives of ophthalmology.

[64]  I. Guénal,et al.  Bcl-2 and Hsp27 act at different levels to suppress programmed cell death , 1997, Oncogene.

[65]  M. Kageyama,et al.  Up-regulation of glial fibrillary acidic protein in the retina of primate eyes with experimental glaucoma. , 1997, Archives of ophthalmology.

[66]  A. Neufeld,et al.  Nitric oxide synthase in the human glaucomatous optic nerve head. , 1997, Archives of ophthalmology.

[67]  M. Hernandez,et al.  The optic nerve head in glaucomatous optic neuropathy. , 1997, Archives of ophthalmology.

[68]  Dean P. Jones,et al.  Prevention of Apoptosis by Bcl-2: Release of Cytochrome c from Mitochondria Blocked , 1997, Science.

[69]  D. Green,et al.  The Release of Cytochrome c from Mitochondria: A Primary Site for Bcl-2 Regulation of Apoptosis , 1997, Science.

[70]  J. Caprioli,et al.  Hyperthermia and hypoxia increase tolerance of retinal ganglion cells to anoxia and excitotoxicity. , 1996, Investigative ophthalmology & visual science.

[71]  K. Schulze-Osthoff,et al.  Small Stress Proteins as Novel Regulators of Apoptosis , 1996, The Journal of Biological Chemistry.

[72]  Xiaodong Wang,et al.  Induction of Apoptotic Program in Cell-Free Extracts: Requirement for dATP and Cytochrome c , 1996, Cell.

[73]  H. Steller,et al.  Migration of glial cells into retinal axon target field in Drosophila melanogaster. , 1996, Journal of neurobiology.

[74]  L. Maffei,et al.  Protection of Retinal Ganglion Cells from Natural and Axotomy-Induced Cell Death in Neonatal Transgenic Mice Overexpressing bcl-2 , 1996, The Journal of Neuroscience.

[75]  P. Mehlen,et al.  Human hsp27, Drosophila hsp27 and human alphaB‐crystallin expression‐mediated increase in glutathione is essential for the protective activity of these proteins against TNFalpha‐induced cell death. , 1996, The EMBO journal.

[76]  H. Quigley Number of people with glaucoma worldwide. , 1996, The British journal of ophthalmology.

[77]  D. Mann,et al.  Tumor necrosis factor-alpha-induced expression of heat shock protein 72 in adult feline cardiac myocytes. , 1996, The American journal of physiology.

[78]  S M Podos,et al.  Elevated glutamate levels in the vitreous body of humans and monkeys with glaucoma. , 1996, Archives of ophthalmology.

[79]  A. Pestronk,et al.  Anti-rhodopsin antibodies in sera from patients with normal-pressure glaucoma. , 1995, Investigative ophthalmology & visual science.

[80]  S. Sharma,et al.  Programmed cell death of retinal ganglion cells during experimental glaucoma. , 1995, Experimental eye research.

[81]  Muneesh Tewari,et al.  Yama/CPP32β, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase , 1995, Cell.

[82]  D. Goeddel,et al.  The TNF receptor 1-associated protein TRADD signals cell death and NF-κB activation , 1995, Cell.

[83]  M. Araie Pattern of visual field defects in normal‐tension and high‐tension glaucoma , 1995, Current opinion in ophthalmology.

[84]  D. Zack,et al.  Retinal ganglion cell death in experimental glaucoma and after axotomy occurs by apoptosis. , 1995, Investigative ophthalmology & visual science.

[85]  K O'Rourke,et al.  Yama/CPP32 beta, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase. , 1995, Cell.

[86]  D. Goeddel,et al.  The TNF receptor 1-associated protein TRADD signals cell death and NF-kappa B activation. , 1995, Cell.

[87]  E. Alnemri,et al.  CPP32, a novel human apoptotic protein with homology to Caenorhabditis elegans cell death protein Ced-3 and mammalian interleukin-1 beta-converting enzyme. , 1994, The Journal of biological chemistry.

[88]  Y. Lazebnik,et al.  Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE , 1994, Nature.

[89]  K. Nagata,et al.  Differential induction of mRNA species encoding several classes of stress proteins following focal cerebral ischemia in rats , 1994, Brain Research.

[90]  J. Flammer The vascular concept of glaucoma. , 1994, Survey of ophthalmology.

[91]  A. Pestronk,et al.  Increased incidence of paraproteinemia and autoantibodies in patients with normal-pressure glaucoma. , 1994, American journal of ophthalmology.

[92]  Shai Shaham,et al.  The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1β-converting enzyme , 1993, Cell.

[93]  Z. Oltvai,et al.  Bcl-2 functions in an antioxidant pathway to prevent apoptosis , 1993, Cell.

[94]  H. A. Quigley,et al.  Open-angle glaucoma. , 1993, The New England journal of medicine.

[95]  J. Jonas,et al.  Pattern of glaucomatous neuroretinal rim loss. , 1993, Ophthalmology.

[96]  H A Quigley,et al.  Foveal ganglion cell loss is size dependent in experimental glaucoma. , 1993, Investigative ophthalmology & visual science.

[97]  D. Young Heat-shock proteins: immunity and autoimmunity , 1992, Current Biology.

[98]  G. Cioffi,et al.  Glaucomatous optic neuropathy. , 1992, American journal of ophthalmology.

[99]  D. Young Heat-shock proteins: immunity and autoimmunity. , 1992 .

[100]  F. Guesdon,et al.  Phosphorylation of the small heat-shock protein is regulated by interleukin 1, tumour necrosis factor, growth factors, bradykinin and ATP. , 1991, The Biochemical journal.

[101]  A. Sommer,et al.  Racial variations in the prevalence of primary open-angle glaucoma. The Baltimore Eye Survey. , 1991, JAMA.

[102]  H A Quigley,et al.  Retinal ganglion cell loss is size dependent in experimental glaucoma. , 1991, Investigative ophthalmology & visual science.

[103]  Joanne Katz,et al.  Blindness and Visual Impairment in an American Urban Population-Reply , 1990 .

[104]  D. Snydacker,et al.  Blindness and visual impairment in an American urban population. , 1990, Archives of ophthalmology.

[105]  J Katz,et al.  Blindness and visual impairment in an American urban population. The Baltimore Eye Survey. , 1990, Archives of ophthalmology.

[106]  W. Welch,et al.  Interleukin 1 and tumour necrosis factor increase phosphorylation of the small heat shock protein , 1989, FEBS letters.

[107]  David L. Vaux,et al.  Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells , 1988, Nature.

[108]  H. Quigley,et al.  Chronic experimental glaucoma in primates. II. Effect of extended intraocular pressure elevation on optic nerve head and axonal transport. , 1980, Investigative ophthalmology & visual science.

[109]  D. Minckler,et al.  A light microscopic, autoradiographic study of axoplasmic transport in the optic nerve head during ocular hypotony, increased intraocular pressure, and papilledema. , 1976, American journal of ophthalmology.

[110]  A. Hendrickson,et al.  Effect of intraocular pressure on rapid axoplasmic transport in monkey optic nerve. , 1974, Investigative ophthalmology.

[111]  H Goldmann,et al.  Open-angle glaucoma. , 1972, The British journal of ophthalmology.