Complex physical properties of EuMgSi – a complementary study by neutron powder diffraction and 151Eu Mössbauer spectroscopy

X-ray pure samples of EuMgSi were synthesized by reactions of the elements in sealed niobium tubes using a high frequency and subsequently a resistance furnace. The structure was investigated by single crystal X-ray diffraction: TiNiSi-type, Pnma, a = 769.5(2), b = 455.0(1), c = 836.9(2) pm, wR2 = 0.033 [I ≥ 2σ(I)], and 705 F2 values with 20 variables. Powder synchrotron radiation diffraction experiments did not reveal any structural changes down to 4.3 K. Magnetic susceptibility data and 151Eu Mossbauer spectra clearly indicate a stable Eu2+ configuration. Two distinct magnetic anomalies around 12 and 14 K can be observed for different samples with dc- and ac-susceptibility, heat capacity and resistivity measurements. Fitting of hyperfine field splitting as a function of temperature (151Eu Mossbauer spectroscopy data) with a Brillouin function also leads to a magnetic ordering around 14 K. Electronic structure calculations in coincidence with the resistivity measurement prove narrow (or nearly zero) gap-semiconducting behaviour. The calculated band gap energy of 0.03 eV should be considered with precautions due to the accuracy of this method. An incommensurate magnetic structure with the propagation vector k = [qx ≈ 0.37, 0, 0] was determined using neutron diffraction data at 5.5 K. In consensus of dc- and ac-susceptibility and neutron powder diffraction a complex combination of antiferromagnetic and ferromagnetic interactions, most likely by super-exchange, is confirmed. These cause two magnetic ordering temperatures, though only one independent crystallographic Eu site in terms of the crystal structure is present in EuMgSi.

[1]  J. Cadogan,et al.  Modulated ferromagnetic ordering and the magnetocaloric response of Eu4PdMg , 2015 .

[2]  R. Nesper,et al.  Evidence of a Mixed Magnetic Phase in EuMgGe: A Semi­metallic Zintl Compound with TiNiSi Structure Type , 2014 .

[3]  V. Petříček,et al.  Crystallographic Computing System JANA2006: General features , 2014 .

[4]  K. Hagihara,et al.  Possibility of Mg- and Ca-based intermetallic compounds as new biodegradable implant materials. , 2013, Materials science & engineering. C, Materials for biological applications.

[5]  H. Takagi,et al.  MgSrSi-Type Compounds as a Possible New Family of Thermoelectric Materials , 2013, Journal of Electronic Materials.

[6]  Xiaowei Ma,et al.  Flux growth and magnetoresistance behavior of rare earth Zintl phase EuMgSn. , 2013, Inorganic chemistry.

[7]  R. Srivastava Investigation on Temperature Sensing of Nanostructured Zinc Oxide Synthesized via Oxalate Route , 2012 .

[8]  J. Rodríguez-Carvajal,et al.  Symmetry and magnetic structures , 2012 .

[9]  R. Nesper,et al.  Spin-Glass Behaviour and Electronic Structure of LiEu2Si3 , 2012 .

[10]  H. Scherrer,et al.  Thermoelectric properties and electronic structure of p-type Mg2Si and Mg2Si0.6Ge0.4 compounds doped with Ga , 2011 .

[11]  T. V. Turchin,et al.  OPTICAL AND ELECTRONIC PROPERTIES OF M2Si (M = Mg, Ca, Sr) GROWN BY REACTIVE DEPOSITION TECHNIQUE , 2010 .

[12]  Deheng Shi,et al.  Structural, electronic, elastic and thermal properties of Mg2Si , 2010 .

[13]  S. Latturner,et al.  Metal to Semimetal Transition in CaMgSi Crystals Grown from Mg−Al Flux , 2010 .

[14]  M. Umemoto,et al.  Thermoelectric Properties of Ca-Mg-Si Alloys , 2009 .

[15]  D. Ryan,et al.  Flat-plate single-crystal silicon sample holders for neutron powder diffraction studies of highly absorbing gadolinium compounds , 2008 .

[16]  Hui Wu,et al.  Structure and hydrogenation properties of the ternary alloys Ca2−xMgxSi (0 ≤ x ≤ 1) , 2007 .

[17]  Gervais Chapuis,et al.  SUPERFLIP– a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions , 2007 .

[18]  Bastian Goldlücke,et al.  Strong non-Arrhenius temperature dependence of the resistivity in the regime of traditional band transport , 2006 .

[19]  R. Pöttgen,et al.  Magnetic ordering in NdRhSn , 2006 .

[20]  Matt Probert,et al.  First principles methods using CASTEP , 2005 .

[21]  S. Brutti,et al.  The phase diagram of the Yb–Si system , 2003 .

[22]  R. Hoffmann,et al.  The Zintl Phase Eu2Si , 2002 .

[23]  H. Eckert,et al.  Magnetic and Electrical Properties, 151Eu Mössbauer Spectroscopy, and Chemical Bonding of REAgMg (RE=La, Ce, Eu, Yb) and EuAuMg , 2002 .

[24]  T. Roisnel,et al.  WinPLOTR: A Windows Tool for Powder Diffraction Pattern Analysis , 2001 .

[25]  R. Pöttgen,et al.  Magnetism and hyperfine interactions in Gd2Ni2Mg , 2001 .

[26]  R. Pöttgen,et al.  AlB2-related intermetallic compounds – a comprehensive view based on group-subgroup relations , 2001 .

[27]  Victor E. Borisenko,et al.  FUNDAMENTAL ELECTRIC PROPERTIES OF SEMICONDUCTING SILICIDES , 2000 .

[28]  B. Delley From molecules to solids with the DMol3 approach , 2000 .

[29]  D. Johrendt,et al.  Equiatomic Intermetallic Europium Compounds: Syntheses, Crystal Chemistry, Chemical Bonding, and Physical Properties , 2000 .

[30]  R. Pöttgen,et al.  Syntheses and Crystal Structures of CaCuGe, CaAuIn, and CaAuSn – Three Different Superstructures of the KHg2 Type , 1998 .

[31]  R. Hoffmann,et al.  The TiNiSi Family of Compounds: Structure and Bonding , 1998 .

[32]  Andreas Savin,et al.  ELF: The Electron Localization Function , 1997 .

[33]  R. Hoffmann,et al.  The Four-Connected Net in the CeCu(2) Structure and Its Ternary Derivatives. Its Electronic and Structural Properties. , 1996, Inorganic chemistry.

[34]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[35]  J. Mydosh Disordered magnetism and spin glasses , 1996 .

[36]  Roman Gladyshevskii,et al.  TYPIX Standardized Data and Crystal Chemical Characterization of Inorganic Structure Types , 1993 .

[37]  Juan Rodríguez-Carvajal,et al.  Recent advances in magnetic structure determination by neutron powder diffraction , 1993 .

[38]  M. L. Fornasini,et al.  RMX compounds formed by alkaline earths, europium and ytterbium III. Ternary phases with M Mg, Hg and X Si, Ge, Sn, Pb , 1993 .

[39]  T. Ziegler Approximate Density Functional Theory as a Practical Tool in Molecular Energetics and Dynamics , 1991 .

[40]  Reinhard Nesper,et al.  A New Look at Electron Localization , 1991 .

[41]  Michael J. Mehl,et al.  Easily Implementable Nonlocal Exchange-Correlation Energy Functional , 1981 .

[42]  K. Yvon,et al.  LAZY PULVERIX, a computer program, for calculating X‐ray and neutron diffraction powder patterns , 1977 .

[43]  H. Schäfer,et al.  Notizen: Darstellung und Kristallstruktur des Ba2Si. , 1976 .

[44]  H. Schäfer,et al.  Der Übergang vom „geordneten”︁ Anti‐PbCl2‐Gitter zum Anti‐PbFCl‐Gitter: Ternäre Phasen ABX der Erdalkalimetalle mit Elementen der 4. Hauptgruppe (A = Ca, Sr, Ba; B = Mg; X = Si, Ge, Sn, Pb) , 1972 .

[45]  E. D. Cyan Handbook of Chemistry and Physics , 1970 .

[46]  H. Schäfer,et al.  Ternäre E-Phasen von Hauptgruppenelementen I. , 1969 .

[47]  D. Panke,et al.  Die Verteilung der Valenzelektronen im Mg2Si , 1969 .

[48]  M. K. Wilkinson,et al.  Neutron Diffraction Investigations of the Magnetic Ordering in FeBr 2 , CoBr 2 , FeCl 2 , and CoCl 2 , 1959 .

[49]  P. Eckerlin,et al.  Die Kristallstruktur von Ca2Si und Ca2Ge , 1955 .

[50]  R. Hoffmann,et al.  The RE M E Phases I. An Overview of Their Structural Variety , 2003 .

[51]  F. d'Heurle,et al.  Silicides : fundamentals and applications : proceedings of the 16th Course of the International School of Solid State Physics, Erice, Italy, 5-16 June 1999 , 2000 .

[52]  S. Ambler,et al.  THE ELEMENTS , 1998 .

[53]  A. P. Hammersley,et al.  Two-dimensional detector software: From real detector to idealised image or two-theta scan , 1996 .

[54]  R. Pöttgen Syntheses and crystal structures of EuZnIn, EuPtIn and EuZnSn: three different site occupancies of the transition metal and indium (tin) atoms on the copper position of the CeCu2 type , 1996 .

[55]  R. C. Weast CRC Handbook of Chemistry and Physics , 1973 .