On the Weak Order Ideal Associated to Linear Codes
暂无分享,去创建一个
[1] N. J. A. Sloane,et al. Coset Analysis of Reed Muller Codes Via Translates of Finite Vector Spaces , 1972, Inf. Control..
[2] Edgar Martínez-Moro,et al. Computing coset leaders and leader codewords of binary codes , 2012, ArXiv.
[3] Sebastian Pokutta,et al. A Polyhedral Characterization of Border Bases , 2016, SIAM J. Discret. Math..
[4] James L. Massey,et al. Minimal Codewords and Secret Sharing , 1999 .
[5] W. Cary Huffman,et al. Fundamentals of Error-Correcting Codes , 1975 .
[6] Steve Szabo,et al. Complexity Issues in Coding Theory , 1997 .
[7] Gérard D. Cohen,et al. The threshold probability of a code , 1995, IEEE Trans. Inf. Theory.
[8] Edgar Martínez-Moro,et al. Algebraic structure of the minimal support codewords set of some linear codes , 2011, Adv. Math. Commun..
[9] Teo Mora,et al. Solving Polynomial Equation Systems II: Macaulay's Paradigm and Gröbner Technology , 2005 .
[10] Tor Helleseth,et al. Error-correction capability of binary linear codes , 2003, IEEE Transactions on Information Theory.
[11] F. MacWilliams,et al. The Theory of Error-Correcting Codes , 1977 .
[12] M. Borges-Quintana,et al. On a Gröbner bases structure associated to linear codes , 2005 .