Nonlinearity, Breaks, and Long-Range Dependence in Time-Series Models

We study the simultaneous occurrence of long memory and nonlinear effects, such as parameter changes and threshold effects, in time series models and apply our modeling framework to daily realized measures of integrated variance. We develop asymptotic theory for parameter estimation and propose two model-building procedures. The methodology is applied to stocks of the Dow Jones Industrial Average during the period 2000 to 2009. We find strong evidence of nonlinear effects in financial volatility. An out-of-sample analysis shows that modeling these effects can improve forecast performance. Supplementary materials for this article are available online.

[1]  A. Kock,et al.  Oracle Inequalities for High Dimensional Vector Autoregressions , 2012, 1311.0811.

[2]  Francis X. Diebold,et al.  Modeling and Forecasting Realized Volatility , 2001 .

[3]  Heino Bohn Nielsen,et al.  Unit Root Vector Autoregression with Volatility Induced Stationarity , 2012 .

[4]  C. Granger Long memory relationships and the aggregation of dynamic models , 1980 .

[5]  Dick van Dijk,et al.  Forecasting S&P 500 volatility: Long memory, level shifts, leverage effects, day-of-the-week seasonality, and macroeconomic announcements , 2009 .

[6]  B. Christensen,et al.  The impact of financial crises on the risk-return tradeoff and the leverage effect , 2015 .

[7]  Michael McAleer,et al.  ASYMPTOTIC THEORY FOR A VECTOR ARMA-GARCH MODEL , 2003, Econometric Theory.

[8]  Dennis Kristensen,et al.  Asymptotic Theory for the QMLE in GARCH-X Models With Stationary and Nonstationary Covariates , 2013 .

[9]  Marcelo C. Medeiros,et al.  A flexible coefficient smooth transition time series model , 2005, IEEE Transactions on Neural Networks.

[10]  Wolfgang Härdle,et al.  Localized Realized Volatility Modeling , 2010 .

[11]  Continuous Trading Dynamically Effectively Complete Market with Heterogeneous Beliefs , 2012 .

[12]  Dick J. C. van Dijk,et al.  Modeling and Forecasting S&P 500 Volatility: Long Memory, Structural Breaks and Nonlinearity , 2004 .

[13]  Lan Zhang,et al.  A Tale of Two Time Scales , 2003 .

[14]  Timo Teräsvirta,et al.  A simple nonlinear time series model with misleading linear properties , 1999 .

[15]  Philip Hans Franses,et al.  A nonlinear long memory model, with an application to US unemployment ☆ , 2002 .

[16]  Olaf Posch,et al.  Measuring Convergence Using Dynamic Equilibrium Models: Evidence from Chinese Provinces , 2012 .

[17]  Fulvio Corsi,et al.  A Simple Approximate Long-Memory Model of Realized Volatility , 2008 .

[18]  James D. Hamilton,et al.  Autoregressive conditional heteroskedasticity and changes in regime , 1994 .

[19]  Zhou Zhou,et al.  “A Tale of Two Time Scales: Determining Integrated Volatility with Noisy High-Frequency Data” , 2005 .

[20]  W. Greene,et al.  计量经济分析 = Econometric analysis , 2009 .

[21]  Han Hong,et al.  Bayesian Averaging, Prediction and Nonnested Model Selection , 2008 .

[22]  Jonathan Stein,et al.  The Frequency Domain , 2001 .

[23]  Ronnie Sircar,et al.  Short time-scale in S&P500 volatility , 2003 .

[24]  P. Christensen,et al.  Information and Heterogeneous Beliefs: Cost of Capital, Trading Volume, and Investor Welfare , 2012 .

[25]  Ernst Schaumburg,et al.  Federal Reserve Bank of New York Staff Reports Jump-robust Volatility Estimation Using Nearest Neighbor Truncation Jump-robust Volatility Estimation Using Nearest Neighbor Truncation , 2010 .

[26]  Stefano Grassi,et al.  Heterogeneous Computing in Economics: A Simplified Approach , 2013, Computational Economics.

[27]  George Kapetanios,et al.  Testing for Neglected Nonlinearity in Long-Memory Models , 2007 .

[28]  Wai Keung Li,et al.  On a threshold autoregression with conditional heteroscedastic variances , 1997 .

[29]  C. Granger,et al.  AN INTRODUCTION TO LONG‐MEMORY TIME SERIES MODELS AND FRACTIONAL DIFFERENCING , 1980 .

[30]  N. Shephard,et al.  Econometric analysis of realized volatility and its use in estimating stochastic volatility models , 2002 .

[31]  P. Billingsley,et al.  Convergence of Probability Measures , 1969 .

[32]  F. Diebold,et al.  Long Memory and Regime Switching , 2000 .

[33]  M. Medeiros,et al.  A multiple regime smooth transition Heterogeneous Autoregressive model for long memory and asymmetries , 2008 .

[34]  Jeffrey M. Wooldridge,et al.  On the application of robust, regression- based diagnostics to models of conditional means and conditional variances , 1991 .

[35]  J. Davidson Stochastic Limit Theory , 1994 .

[36]  Lasse Bork,et al.  Housing Price Forecastability: A Factor Analysis , 2016 .

[37]  Robinson Kruse,et al.  On tests for linearity against STAR models with deterministic trends , 2012 .

[38]  L. Márkus,et al.  A long range dependent model with nonlinear innovations for simulating daily river flows , 2004 .

[39]  George Kapetanios,et al.  Nonlinear models for strongly dependent processes with financial applications , 2008 .

[40]  Christopher G. Lamoureux,et al.  Persistence in Variance, Structural Change, and the GARCH Model , 1990 .

[41]  N. Shephard,et al.  Econometric analysis of realised volatility and its use in estimating stochastic volatility models , 2000 .

[42]  Ruey S. Tsay,et al.  Functional-Coefficient Autoregressive Models , 1993 .

[43]  Timo Teräsvirta,et al.  A Sequential Procedure for Determining the Number of Regimes in a Threshold Autoregressive Model , 2006 .

[44]  S. Mittnik,et al.  The Volatility of Realized Volatility , 2005 .

[45]  Zhenjiang Qin Heterogeneous Beliefs, Public Information, and Option Markets , 2012 .

[46]  Pentti Saikkonen,et al.  COINTEGRATING SMOOTH TRANSITION REGRESSIONS , 2004, Econometric Theory.

[47]  Timo Teräsvirta,et al.  Modelling volatility by variance decomposition , 2013 .

[48]  C. Granger,et al.  Occasional structural breaks and long memory with an application to the S&P 500 absolute stock returns , 2004 .

[49]  Timo Teräsvirta,et al.  A SIMPLE VARIABLE SELECTION TECHNIQUE FOR NONLINEAR MODELS , 2001 .

[50]  N. Shephard,et al.  Designing realised kernels to measure the ex-post variation of equity prices in the presence of noise , 2006 .

[51]  Roberto Renò,et al.  Discrete-Time Volatility Forecasting With Persistent Leverage Effect and the Link With Continuous-Time Volatility Modeling , 2010 .

[52]  Michael A. Salsburg,et al.  Modeling and Forecasting , 2007, Int. CMG Conference.

[53]  Chih-Chiang Hsu,et al.  Change point estimation in regressions with I(d) variables , 2001 .

[54]  Halbert White,et al.  Tests of Conditional Predictive Ability , 2003 .

[55]  J. Wooldridge A Unified Approach to Robust, Regression-Based Specification Tests , 1990, Econometric Theory.

[56]  Tae-Hwy Lee,et al.  Stein-Rule Estimation and Generalized Shrinkage Methods for Forecasting Using Many Predictors , 2012 .

[57]  F. Diebold,et al.  The distribution of realized stock return volatility , 2001 .

[58]  D. Andrews,et al.  Nonlinear Econometric Models with Deterministically Trending Variables , 1995 .

[59]  Eric T. Hillebrand Overlaying Time Scales in Financial Volatility Data , 2004 .

[60]  F. Diebold,et al.  The Distribution of Realized Exchange Rate Volatility , 2000 .

[61]  Johannes Tang Kristensen Factor-based forecasting in the presence of outliers: Are factors better selected and estimated by the median than by the mean? , 2012 .

[62]  Fulvio Corsi,et al.  A Simple Long Memory Model of Realized Volatility , 2004 .

[63]  T. Teräsvirta Specification, Estimation, and Evaluation of Smooth Transition Autoregressive Models , 1994 .

[64]  H. White,et al.  Information criteria for selecting possibly misspecified parametric models , 1996 .

[65]  Marcelo C. Medeiros,et al.  MODELING MULTIPLE REGIMES IN FINANCIAL VOLATILITY WITH A FLEXIBLE COEFFICIENT GARCH(1,1) MODEL , 2009, Econometric Theory.

[66]  Eric Hillebrand,et al.  Level changes in volatility models , 2012 .

[67]  Helmut Ltkepohl,et al.  New Introduction to Multiple Time Series Analysis , 2007 .

[68]  Halbert White,et al.  Estimation, inference, and specification analysis , 1996 .

[69]  M. Medeiros,et al.  Chapter 8 Estimating and Forecasting GARCH Models in the Presence of Structural Breaks and Regime Switches , 2008 .

[70]  Timo Teräsvirta,et al.  Modelling nonlinear economic time series , 2010 .

[71]  M. Medeiros,et al.  Asymmetric effects and long memory in the volatility of Dow Jones stocks , 2009 .

[72]  Robinson Kruse,et al.  Unit roots, nonlinearities and structural breaks , 2012 .

[73]  Tae-Hwy Lee,et al.  Using the Yield Curve in Forecasting Output Growth and In?flation , 2011 .