Exploring the Physical Limits of Saturation Contrast in Magnetic Resonance Imaging
暂无分享,去创建一个
D. Sugny | S. J. Glaser | S. Glaser | D. Sugny | M. Lapert | M. Lapert | Y. Zhang | M. Janich | Y. Zhang | M. Janich
[1] G. Bodenhausen,et al. Principles of nuclear magnetic resonance in one and two dimensions , 1987 .
[2] M. Levitt. Spin Dynamics: Basics of Nuclear Magnetic Resonance , 2001 .
[3] L. Vandersypen,et al. NMR techniques for quantum control and computation , 2004, quant-ph/0404064.
[4] G M Bydder,et al. MR Imaging: Clinical Use of the Inversion Recovery Sequence , 1985, Journal of computer assisted tomography.
[5] S. Glaser,et al. Unitary control in quantum ensembles: maximizing signal intensity in coherent spectroscopy , 1998, Science.
[6] Jonathan A. Jones,et al. Implementation of a quantum search algorithm on a quantum computer , 1998, Nature.
[7] Timo O. Reiss,et al. Application of optimal control theory to the design of broadband excitation pulses for high-resolution NMR. , 2003, Journal of magnetic resonance.
[8] S. Glaser,et al. Time-optimal control of spin 1/2 particles in the presence of radiation damping and relaxation. , 2011, The Journal of chemical physics.
[9] A. Haase,et al. Rapid NMR imaging of dynamic processes using the FLASII technique , 1986, Magnetic resonance in medicine.
[10] M. Chyba,et al. Singular Trajectories and Their Role in Control Theory , 2003, IEEE Transactions on Automatic Control.
[11] L. S. Pontryagin,et al. Mathematical Theory of Optimal Processes , 1962 .
[12] J. Pauly,et al. Parameter relations for the Shinnar-Le Roux selective excitation pulse design algorithm [NMR imaging]. , 1991, IEEE transactions on medical imaging.
[13] D. Leung,et al. Experimental realization of a quantum algorithm , 1998, Nature.
[14] Yun Zhang,et al. Geometric Optimal Control of the Contrast Imaging Problem in Nuclear Magnetic Resonance , 2012, IEEE Transactions on Automatic Control.
[15] Ananyo Bhattacharya. Chemistry: Breaking the billion-hertz barrier , 2010, Nature.
[16] Mark Bydder,et al. Optimization of RF excitation to maximize signal and T2 contrast of tissues with rapid transverse relaxation , 2010, Magnetic resonance in medicine.
[17] Navin Khaneja,et al. Optimal Control Methods in NMR Spectroscopy , 2010 .
[18] K. Pruessmann,et al. B 1+ interferometry for the calibration of RF transmitter arrays , 2009, Magnetic resonance in medicine.
[19] Y Zhang,et al. Singular extremals for the time-optimal control of dissipative spin 1/2 particles. , 2010, Physical review letters.
[20] Matthew A Bernstein,et al. CHAPTER 14 – BASIC PULSE SEQUENCES , 2004 .
[21] J V Hajnal,et al. MRI: use of the inversion recovery pulse sequence. , 1998, Clinical radiology.
[22] Bernard Bonnard,et al. Time-Minimal Control of Dissipative Two-Level Quantum Systems: The Integrable Case , 2009, SIAM J. Control. Optim..
[23] Wilson Fong. Handbook of MRI Pulse Sequences , 2005 .
[24] Monique Chyba,et al. Time-Minimal Control of Dissipative Two-Level Quantum Systems: The Generic Case , 2008, IEEE Transactions on Automatic Control.
[25] V. Jurdjevic. Geometric control theory , 1996 .