Experimental realization of self-guiding unidirectional electromagnetic edge states.

We present an experimental demonstration of self-guiding electromagnetic edge states existing along the zigzag edge of a honeycomb magnetic photonic crystal. These edge states are shown to possess unidirectional propagation characteristics that are robust against various types of defects and obstacles. In particular, they allow for the unidirectional transport of electromagnetic energy without requiring an ancillary cladding layer.

[1]  E. Yablonovitch Photonics: One-way road for light , 2009, Nature.

[2]  C. Chan,et al.  One-way edge mode in a magneto-optical honeycomb photonic crystal , 2009 .

[3]  Andrew G. Glen,et al.  APPL , 2001 .

[4]  M. Soljačić,et al.  Reflection-free one-way edge modes in a gyromagnetic photonic crystal. , 2007, Physical review letters.

[5]  S. Girvin,et al.  The Quantum Hall Effect , 1987 .

[6]  G. Dorda,et al.  New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance , 1980 .

[7]  Zheng Wang,et al.  Observation of unidirectional backscattering-immune topological electromagnetic states , 2009, Nature.

[8]  Jinxin Fu,et al.  Robust one-way modes in gyromagnetic photonic crystal waveguides with different interfaces , 2010 .

[9]  D. C. Tsui,et al.  Two-Dimensional Magnetotransport in the Extreme Quantum Limit , 1982 .

[10]  Y. Hatsugai,et al.  Chern number and edge states in the integer quantum Hall effect. , 1993, Physical review letters.

[11]  A. Geim,et al.  Two-dimensional gas of massless Dirac fermions in graphene , 2005, Nature.

[12]  D. Thouless,et al.  Quantized Hall conductance in a two-dimensional periodic potential , 1992 .

[13]  Zhifang Lin,et al.  Manipulating negative-refractive behavior with a magnetic field. , 2008, Physical review letters.

[14]  Shiyang Liu,et al.  Magnetically controllable unidirectional electromagnetic waveguiding devices designed with metamaterials , 2010 .

[15]  P. Iriarte,et al.  Observation of a Dirac point in microwave experiments with a photonic crystal modeling graphene , 2010, 1005.4506.

[16]  P. Guyot-Sionnest,et al.  Excitation of dark plasmons in metal nanoparticles by a localized emitter. , 2009, Physical review letters.

[17]  S. Raghu,et al.  Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. , 2008, Physical review letters.

[18]  P. Kim,et al.  Experimental observation of the quantum Hall effect and Berry's phase in graphene , 2005, Nature.

[19]  Masaru Onoda,et al.  Photonic analog of graphene model and its extension: Dirac cone, symmetry, and edge states , 2009, 0905.4149.

[20]  D. Pozar Microwave Engineering , 1990 .

[21]  F. D. M. Haldane,et al.  Analogs of quantum-Hall-effect edge states in photonic crystals , 2008 .

[22]  Yun Lai,et al.  Dirac spectra and edge states in honeycomb plasmonic lattices. , 2008, Physical review letters.