Molecular spiders in one dimension

Molecular spiders are synthetic bio-molecular systems which have "legs" made of short single-stranded segments of DNA. Spiders move on a surface covered with single-stranded DNA segments complementary to legs. Different mappings are established between various models of spiders and simple exclusion processes. For spiders with simple gait and varying number of legs we compute the diffusion coefficient; when the hopping is biased we also compute their velocity.

[1]  Ph. Mullhaupt Review of "The dynamics of legged locomotion: models, analysis, and challenges" by Ph. Holmes, R. J. Full, D. Koditschek, and J. Guckenheimer, SIAM Rev. 48 (2006), no. 2, 207-304 , 2007 .

[2]  N. Kampen,et al.  Stochastic processes in physics and chemistry , 1981 .

[3]  J. Lebowitz,et al.  A Gallavotti–Cohen-Type Symmetry in the Large Deviation Functional for Stochastic Dynamics , 1998, cond-mat/9811220.

[4]  David P. Landau,et al.  Phase transitions and critical phenomena , 1989, Computing in Science & Engineering.

[5]  Anatoly B. Kolomeisky,et al.  Molecular motors and the forces they exert , 1999 .

[6]  Eytan Domany,et al.  An exact solution of a one-dimensional asymmetric exclusion model with open boundaries , 1992 .

[7]  R. Lipowsky,et al.  Cooperative cargo transport by several molecular motors. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Bernard Derrida,et al.  Exact diffusion constant for the one-dimensional partially asymmetric exclusion model , 1997 .

[9]  Leah B Shaw,et al.  Mean-field approaches to the totally asymmetric exclusion process with quenched disorder and large particles. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  N. Seeman,et al.  A robust DNA mechanical device controlled by hybridization topology , 2002, Nature.

[11]  M. Evans,et al.  Traffic and Granular Flow ' 05 , 2007 .

[12]  Gilles Schaeffer,et al.  A combinatorial approach to jumping particles , 2005, J. Comb. Theory, Ser. A.

[13]  J. Davies,et al.  Molecular Biology of the Cell , 1983, Bristol Medico-Chirurgical Journal.

[14]  B. Derrida,et al.  Exact solution of a 1d asymmetric exclusion model using a matrix formulation , 1993 .

[15]  Darko Stefanovic,et al.  Behavior of polycatalytic assemblies in a substrate-displaying matrix. , 2006, Journal of the American Chemical Society.

[16]  H. Stanley,et al.  Phase Transitions and Critical Phenomena , 2008 .

[17]  N. S. Barnett,et al.  Private communication , 1969 .

[18]  M. Evans,et al.  Disorder and nonconservation in a driven diffusive system. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  John Guckenheimer,et al.  The Dynamics of Legged Locomotion: Models, Analyses, and Challenges , 2006, SIAM Rev..

[20]  Evans,et al.  Probability of second law violations in shearing steady states. , 1993, Physical review letters.

[21]  S. Balasubramanian,et al.  DNA molecular motor driven micromechanical cantilever arrays. , 2005, Journal of the American Chemical Society.

[22]  B. C. Carter,et al.  Multiple-motor based transport and its regulation by Tau , 2007, Proceedings of the National Academy of Sciences.

[23]  T. Liggett,et al.  Stochastic Interacting Systems: Contact, Voter and Exclusion Processes , 1999 .

[24]  N. Seeman,et al.  A precisely controlled DNA biped walking device , 2004 .

[25]  J. Howard,et al.  Mechanics of Motor Proteins and the Cytoskeleton , 2001 .

[26]  R. Parton Molecular transport and reaction in zeolites , 1995 .

[27]  S. Alexander,et al.  Diffusion of labeled particles on one-dimensional chains , 1978 .

[28]  B. Derrida AN EXACTLY SOLUBLE NON-EQUILIBRIUM SYSTEM : THE ASYMMETRIC SIMPLE EXCLUSION PROCESS , 1998 .

[29]  N. Seeman From genes to machines: DNA nanomechanical devices. , 2005, Trends in biochemical sciences.

[30]  A. Pipkin,et al.  Kinetics of synthesis and/or conformational changes of biological macromolecules , 1966 .

[31]  R. Lipowsky,et al.  Traffic of Molecular Motors , 2005, cond-mat/0512119.

[32]  B. Derrida,et al.  Exact diffusion constant of a one-dimensional asymmetric exclusion model with open boundaries , 1995 .

[33]  Debashish Chowdhury,et al.  Intracellular transport by single-headed kinesin KIF1A: effects of single-motor mechanochemistry and steric interactions. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  G. Schütz 1 – Exactly Solvable Models for Many-Body Systems Far from Equilibrium , 2001 .

[35]  H. Spohn Large Scale Dynamics of Interacting Particles , 1991 .

[36]  Francesco Zerbetto,et al.  Synthetic molecular motors and mechanical machines. , 2007, Angewandte Chemie.

[37]  D. Wolf,et al.  Traffic and Granular Flow , 1996 .

[38]  P. M. Richards Theory of one-dimensional hopping conductivity and diffusion , 1977 .

[39]  Anatoly B. Kolomeisky,et al.  Local inhomogeneity in asymmetric simple exclusion processes with extended objects , 2004 .

[40]  P. Fedders Two-point correlation functions for a distinguishable particle hopping on a uniform one-dimensional chain , 1978 .

[41]  Clemens Bechinger,et al.  Single-file diffusion of colloids in one-dimensional channels. , 2000, Physical review letters.

[42]  A. Pipkin,et al.  Kinetics of biopolymerization on nucleic acid templates , 1968, Biopolymers.

[43]  Erwin Frey,et al.  Phase coexistence in driven one-dimensional transport. , 2003, Physical review letters.

[44]  J. H. Gibbs,et al.  Concerning the kinetics of polypeptide synthesis on polyribosomes , 1969 .

[45]  D. Levitt,et al.  Dynamics of a Single-File Pore: Non-Fickian Behavior , 1973 .

[46]  W. Ebeling Stochastic Processes in Physics and Chemistry , 1995 .

[47]  A. Kolomeisky Exact results for parallel-chain kinetic models of biological transport , 2001 .

[48]  Bernard Derrida,et al.  Velocity and diffusion constant of a periodic one-dimensional hopping model , 1983 .

[49]  Cohen,et al.  Dynamical Ensembles in Nonequilibrium Statistical Mechanics. , 1994, Physical review letters.

[50]  Evans,et al.  Equilibrium microstates which generate second law violating steady states. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[51]  Schütz,et al.  Non-Abelian symmetries of stochastic processes: Derivation of correlation functions for random-vertex models and disordered-interacting-particle systems. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[52]  D. Sherrington Stochastic Processes in Physics and Chemistry , 1983 .

[53]  Kelvin H. Lee,et al.  Totally asymmetric exclusion process with extended objects: a model for protein synthesis. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[54]  N. Pierce,et al.  A synthetic DNA walker for molecular transport. , 2004, Journal of the American Chemical Society.

[55]  Bernard Derrida,et al.  Exact diffusion constant for one-dimensional asymmetric exclusion models , 1993 .

[56]  Dynamic properties of motor proteins with two subunits , 2005, cond-mat/0503169.

[57]  E. Cohen,et al.  Dynamical ensembles in stationary states , 1995, chao-dyn/9501015.

[58]  D. Chowdhury,et al.  Traffic of interacting ribosomes: effects of single-machine mechanochemistry on protein synthesis. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[59]  T. Chou,et al.  Clustered bottlenecks in mRNA translation and protein synthesis. , 2003, Physical review letters.