Radialization and Fake Distances

The proof of some of our main results, for instance the (CSP), relies on the construction of a suitable radial solution of (P≥) or (P≤) to be compared with a given one. For convenience, hereafter we extend φ to an odd function on all of \(\mathbb R\) by setting $$\displaystyle \varphi (s) = - \varphi (-s) \qquad \text{for each } \, s<0. $$

[1]  G. Carron UNE SUITE EXACTE EN L2-COHOMOLOGIE , 1998 .

[2]  Jan Malý,et al.  Fine Regularity of Solutions of Elliptic Partial Differential Equations , 1997 .

[3]  M. Rigoli,et al.  Vanishing and Finiteness Results in Geometric Analysis: A Generalization of the Bochner Technique , 2008 .

[4]  I. Holopainen Nonlinear potential theory and quasiregular mappings on Riemannian manifolds , 1990 .

[5]  M. Rigoli,et al.  On the 1/H-flow by p-Laplace approximation: New estimates via fake distances under Ricci lower bounds , 2019, American Journal of Mathematics.

[6]  V. Agostiniani,et al.  Minkowski Inequalities via Nonlinear Potential Theory , 2019, Archive for Rational Mechanics and Analysis.

[7]  Ricci curvature and monotonicity for harmonic functions , 2012, 1209.4669.

[8]  Emmanuel Hebey Nonlinear analysis on manifolds: Sobolev spaces and inequalities , 1999 .

[9]  David Hoffman,et al.  Sobolev and isoperimetric inequalities for riemannian submanifolds , 2010 .

[10]  Mean Value Theorems on Manifolds , 2006, math/0608608.

[11]  M. Troyanov Parabolicity of manifolds , 1999 .

[12]  Patrizia Pucci,et al.  The Maximum Principle , 2007 .

[13]  C. Croke,et al.  Some isoperimetric inequalities and eigenvalue estimates , 1980 .

[14]  S. Yau,et al.  On the parabolic kernel of the Schrödinger operator , 1986 .

[15]  I. Holopainen Volume growth, Green’s functions, and parabolicity of ends , 1999 .

[16]  Bruno Bianchini,et al.  On Some Aspects of Oscillation Theory and Geometry , 2013 .

[17]  Marc Troyanov Solving the $p$-Laplacian on manifolds , 1999 .

[18]  Y. Pinchover,et al.  Ground state alternative for p-Laplacian with potential term , 2005 .

[19]  Masahiko Kanai,et al.  Rough isometries, and combinatorial approximations of geometries of non ∙ compact riemannian manifolds , 1985 .

[20]  Weighted Sobolev Inequalities and Ricci Flat Manifolds , 2006, math/0602136.

[21]  M. Troyanov,et al.  The connectivity at infinity of a manifold and $L^{q,p}$-Sobolev inequalities , 2010, 1007.1761.

[22]  T. Colding New monotonicity formulas for Ricci curvature and applications. I , 2011, 1111.4715.

[23]  A. Pinamonti,et al.  Geometric aspects of p-capacitary potentials , 2018, Annales de l'Institut Henri Poincaré C, Analyse non linéaire.

[24]  Positive Solutions of Quasilinear Elliptic Equations on Riemannian Manifolds , 1992 .

[25]  R. Bishop Decomposition of cut loci , 1977 .

[26]  M. Rigoli,et al.  Maximum Principles On Riemannian Manifolds And Applications , 2005 .

[27]  P. Tolksdorf,et al.  Regularity for a more general class of quasilinear elliptic equations , 1984 .

[28]  Franz-Erich Wolter Distance function and cut loci on a complete Riemannian manifold , 1979 .

[29]  Satyanad Kichenassamy,et al.  Singular solutions of thep-laplace equation , 1986 .

[30]  V. Agostiniani,et al.  Sharp geometric inequalities for closed hypersurfaces in manifolds with nonnegative Ricci curvature , 2018, Inventiones mathematicae.

[31]  M. Rigoli,et al.  Yamabe type equations with a sign-changing nonlinearity, and the prescribed curvature problem , 2014, 1404.3118.

[32]  Alexander Grigor'yan,et al.  Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds , 1999 .

[33]  M. Rigoli,et al.  Yamabe type equations with sign-changing nonlinearities on non-compact Riemannian manifolds , 2015 .

[34]  James Serrin,et al.  Local behavior of solutions of quasi-linear equations , 1964 .