Four Symmetry Classes of Plane Partitions under One Roof

In a previous paper, the author applied the permanent-determinant method of Kasteleyn and its non-bipartite generalization, the Hafnian?Pfaffian method, to obtain a determinant or a Pfaffian that enumerates each of the ten symmetry classes of plane partitions. After a cosmetic generalization of the Kasteleyn method, we identify the matrices in the four determinantal cases (plain plane partitions, cyclically symmetric plane partitions, transpose-complement plane partitions, and the intersection of the last two types) in the representation theory of sl(2, C). The result is a unified proof of the four enumerations.

[1]  N. Reshetikhin,et al.  Quantum Groups , 1993, hep-th/9311069.

[2]  Nicolai Reshetikhin,et al.  Quantum Groups , 1993 .

[3]  Robert A. Proctor Product evaluations of lefschetz determinants for grassmannians and of determinants of multinomial coefficients , 1990, J. Comb. Theory, Ser. A.

[4]  John R. Stembridge,et al.  On minuscule representations, plane partitions and involutions in complex Lie groups , 1994 .

[5]  Robert A. Proctor Bruhat Lattices, Plane Partition Generating Functions, and Minuscule Representations , 1984, Eur. J. Comb..

[6]  Greg Kuperberg Symmetries of Plane Partitions and the Permanent - Determinant Method , 1994, J. Comb. Theory, Ser. A.

[7]  John R. Stembridge,et al.  Some Hidden Relations Involving the Ten Symmetry Classes of Plane Partitions , 1994, J. Comb. Theory, Ser. A.

[8]  Richard P. Stanley,et al.  Symmetries of plane partitions , 1986, J. Comb. Theory A.

[9]  John R. Stembridge The Enumeration of Totally Symmetric Plane Partitions , 1995 .

[10]  Greg Kuperberg An Exploration of the Permanent-Determinant Method , 1998, Electron. J. Comb..

[11]  Greg Kuperberg Self-complementary Plane Partitions by Proctor's Minuscule Method , 1994, Eur. J. Comb..

[12]  Jerome Percus,et al.  One More Technique for the Dimer Problem , 1969 .

[13]  George E. Andrews,et al.  Plane Partitions V: The TSSCPP Conjecture , 1994, J. Comb. Theory A.

[14]  I. Gessel,et al.  Binomial Determinants, Paths, and Hook Length Formulae , 1985 .