Four Symmetry Classes of Plane Partitions under One Roof
暂无分享,去创建一个
[1] N. Reshetikhin,et al. Quantum Groups , 1993, hep-th/9311069.
[2] Nicolai Reshetikhin,et al. Quantum Groups , 1993 .
[3] Robert A. Proctor. Product evaluations of lefschetz determinants for grassmannians and of determinants of multinomial coefficients , 1990, J. Comb. Theory, Ser. A.
[4] John R. Stembridge,et al. On minuscule representations, plane partitions and involutions in complex Lie groups , 1994 .
[5] Robert A. Proctor. Bruhat Lattices, Plane Partition Generating Functions, and Minuscule Representations , 1984, Eur. J. Comb..
[6] Greg Kuperberg. Symmetries of Plane Partitions and the Permanent - Determinant Method , 1994, J. Comb. Theory, Ser. A.
[7] John R. Stembridge,et al. Some Hidden Relations Involving the Ten Symmetry Classes of Plane Partitions , 1994, J. Comb. Theory, Ser. A.
[8] Richard P. Stanley,et al. Symmetries of plane partitions , 1986, J. Comb. Theory A.
[9] John R. Stembridge. The Enumeration of Totally Symmetric Plane Partitions , 1995 .
[10] Greg Kuperberg. An Exploration of the Permanent-Determinant Method , 1998, Electron. J. Comb..
[11] Greg Kuperberg. Self-complementary Plane Partitions by Proctor's Minuscule Method , 1994, Eur. J. Comb..
[12] Jerome Percus,et al. One More Technique for the Dimer Problem , 1969 .
[13] George E. Andrews,et al. Plane Partitions V: The TSSCPP Conjecture , 1994, J. Comb. Theory A.
[14] I. Gessel,et al. Binomial Determinants, Paths, and Hook Length Formulae , 1985 .