A 10 bit, 300 MS/s Nyquist Current-Steering Power DAC With 6 V$_{\rm PP}$ Output Swing

A 10 bit current-steering, digital-to-analog converter (DAC) is presented that delivers 6 V PP into a 100 Ω differential load. To realize high-voltage swings using fineline CMOS, a stacked-FET buffer is used to isolate the current source from the output load. The stacked-FET buffer degrades the linearity of the DAC. This work presents a Volterra analysis to capture the frequency-dependent behavior of the stacked-FET circuit that can be cascaded to quantify the linearity of an N-device stack. The power DAC is implemented in 45 nm CMOS SOI and the measured differential nonlinearity (DNL) and integral nonlinearity (INL) is better than 0.4 and 0.6 LSB, respectively. The DAC consumes 476 mW and achieves a peak SFDR of 73 dB and a minimum IM3 of -69 dBc. This DAC demonstrates the largest output swing and highest power efficiency for a high-resolution ( >8 bit), high-speed ( >100 MS/s) DAC.

[1]  Ali M. Niknejad,et al.  A Highly Linear Broadband CMOS LNA Employing Noise and Distortion Cancellation , 2007, IEEE Journal of Solid-State Circuits.

[2]  W. Sansen,et al.  SFDR-bandwidth limitations for high speed high resolution current steering CMOS D/A converters , 1999, ICECS'99. Proceedings of ICECS '99. 6th IEEE International Conference on Electronics, Circuits and Systems (Cat. No.99EX357).

[3]  J. G. McRory,et al.  Transformer coupled stacked FET power amplifiers , 1999 .

[4]  D.A. Mercer,et al.  Low-Power Approaches to High-Speed Current-Steering Digital-to-Analog Converters in 0.18-$\mu$m CMOS , 2007, IEEE Journal of Solid-State Circuits.

[5]  K. O'Sullivan,et al.  A 12-bit 320-MSample/s current-steering CMOS D/A converter in 0.44 mm/sup 2/ , 2004, IEEE Journal of Solid-State Circuits.

[6]  Peter M. Asbeck,et al.  Active Millimeter-Wave Phase-Shift Doherty Power Amplifier in 45-nm SOI CMOS , 2013, IEEE Journal of Solid-State Circuits.

[7]  M. Steyaert,et al.  A 130 nm CMOS 6-bit Full Nyquist 3 GS/s DAC , 2007, IEEE Journal of Solid-State Circuits.

[8]  Hae-Seung Lee,et al.  Output impedance requirements for DACs , 2003, Proceedings of the 2003 International Symposium on Circuits and Systems, 2003. ISCAS '03..

[9]  Piet Wambacq,et al.  Distortion analysis of analog integrated circuits , 1998 .

[10]  Michiel Steyaert,et al.  A 130 nm CMOS 6-bit full nyquist 3GS/s DAC , 2007, 2007 IEEE Asian Solid-State Circuits Conference.

[11]  James F. Buckwalter,et al.  A 10-b, 300-MS/s power DAC with 6-Vpp differential swing , 2013, 2013 IEEE Radio Frequency Integrated Circuits Symposium (RFIC).

[12]  Yu Lin,et al.  A 12 bit 2.9 GS/s DAC With IM3 $ ≪ -$60 dBc Beyond 1 GHz in 65 nm CMOS , 2009, IEEE Journal of Solid-State Circuits.

[13]  K. Bult,et al.  A 10-b, 500-MSample/s CMOS DAC in 0.6 mm2 , 1998, IEEE J. Solid State Circuits.

[14]  M. Berroth,et al.  A 900-MHz 29.5-dBm 0.13-μm CMOS HiVP Power Amplifier , 2008, IEEE Transactions on Microwave Theory and Techniques.

[15]  Marcel J. M. Pelgrom,et al.  Matching properties of MOS transistors , 1989 .

[16]  Michel Steyaert,et al.  A 12-bit intrinsic accuracy high-speed CMOS DAC , 1998, IEEE J. Solid State Circuits.

[17]  Jieh-Tsorng Wu,et al.  A 12-Bit 1.25-GS/s DAC in 90 nm CMOS With $ > $70 dB SFDR up to 500 MHz , 2011, IEEE Journal of Solid-State Circuits.

[18]  Michiel Steyaert,et al.  A 10–Bit 1.6-GS/s 27-mW Current-Steering D/A Converter With 550-MHz 54-dB SFDR Bandwidth in 130-nm CMOS , 2010, IEEE Transactions on Circuits and Systems I: Regular Papers.

[19]  Gabriel M. Rebeiz,et al.  A 2-Bit, 24 dBm, Millimeter-Wave SOI CMOS Power-DAC Cell for Watt-Level High-Efficiency, Fully Digital m-ary QAM Transmitters , 2013, IEEE Journal of Solid-State Circuits.

[20]  W. Sansen,et al.  A 10-bit 1-GSample/s Nyquist current-steering CMOS D/A converter , 2001, Proceedings of the IEEE 2000 Custom Integrated Circuits Conference (Cat. No.00CH37044).

[21]  Jinho Jeong,et al.  A Watt-Level Stacked-FET Linear Power Amplifier in Silicon-on-Insulator CMOS , 2010, IEEE Transactions on Microwave Theory and Techniques.

[22]  J. F. Buckwalter,et al.  Linearity Considerations for Low-EVM, Millimeter-Wave Direct-Conversion Modulators , 2012, IEEE Transactions on Microwave Theory and Techniques.

[23]  Peter M. Asbeck,et al.  Analysis and Design of Stacked-FET Millimeter-Wave Power Amplifiers , 2013, IEEE Transactions on Microwave Theory and Techniques.