The role of norepinephrine in epilepsy: from the bench to the bedside

[1]  E. Wong,et al.  The selective norepinephrine reuptake inhibitor antidepressant reboxetine: pharmacological and clinical profile. , 2006, CNS drug reviews.

[2]  Gary Aston-Jones,et al.  CHAPTER 11 – Locus Coeruleus, A5 and A7 Noradrenergic Cell Groups , 2004 .

[3]  G. Tononi,et al.  Extensive and Divergent Effects of Sleep and Wakefulness on Brain Gene Expression , 2004, Neuron.

[4]  C. Elger,et al.  Antidepressive treatment in patients with temporal lobe epilepsy and major depression: a prospective study with three different antidepressants , 2003, Epilepsy & Behavior.

[5]  K. Matthews,et al.  Vagus nerve stimulation and refractory depression , 2003, British Journal of Psychiatry.

[6]  L. Murri,et al.  A damage to locus coeruleus neurons converts sporadic seizures into self‐sustaining limbic status epilepticus , 2003, The European journal of neuroscience.

[7]  Lippincott Williams Wilkins,et al.  Practice Parameter: Temporal lobe and localized neocortical resections for epilepsy: Report of the Quality Standards Subcommittee of the American Academy of Neurology, in Association with the American Epilepsy Society and the American Association of Neurological Surgeons , 2003, Neurology.

[8]  H. Sackeim,et al.  Vagus nerve stimulation (VNS): utility in neuropsychiatric disorders. , 2003, The international journal of neuropsychopharmacology.

[9]  F. Dudek,et al.  Effects of Fluoxetine and TFMPP on Spontaneous Seizures in Rats with Pilocarpine‐induced Epilepsy , 2002, Epilepsia.

[10]  H. Lüders,et al.  Systemic Overexpression of the α1B‐Adrenergic Receptor in Mice: An Animal Model of Epilepsy , 2002 .

[11]  Steven C Schachter,et al.  Vagus nerve stimulation therapy summary: Five years after FDA approval , 2002, Neurology.

[12]  M. Min,et al.  Change in bi‐directional plasticity at CA1 synapses in hippocampal slices taken from 6‐hydroxydopamine‐treated rats: the role of endogenous norepinephrine , 2002, The European journal of neuroscience.

[13]  D. Weinshenker,et al.  The role of catecholamines in seizure susceptibility: new results using genetically engineered mice. , 2002, Pharmacology & therapeutics.

[14]  A. Kanner,et al.  Depression and epilepsy: How closely related are they? , 2002, Neurology.

[15]  Kazuto Kobayashi,et al.  Genetic evidence for noradrenergic control of long-term memory consolidation , 2001, Brain and Development.

[16]  Kazuto Kobayashi,et al.  The Central Noradrenaline System and Memory Consolidation , 2001, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[17]  J. Wheless,et al.  Vagus Nerve Stimulation in Children with Refractory Seizures Associated with Lennox–Gastaut Syndrome , 2001, Epilepsia.

[18]  D. Labar,et al.  Vagus Nerve Stimulation: Analysis of Device Parameters in 154 Patients during the Long‐Term XE5 Study , 2001, Epilepsia.

[19]  S. Pacia,et al.  Biogenic amines in the human neocortex in patients with neocortical and mesial temporal lobe epilepsy: identification with in situ microvoltammetry , 2001, Brain Research.

[20]  Kevin S. Chen,et al.  Biochemical effects of the monoamine neurotoxins DSP‐4 and MDMA in specific brain regions of MAO‐B‐deficient mice , 2001, Synapse.

[21]  G. Tononi,et al.  Differential Expression of Plasticity-Related Genes in Waking and Sleep and Their Regulation by the Noradrenergic System , 2000, The Journal of Neuroscience.

[22]  Scott Sands,et al.  Overexpression of the α1B-adrenergic receptor causes apoptotic neurodegeneration: Multiple system atrophy , 2000, Nature Medicine.

[23]  J. Hohmann,et al.  Pediatrics, and , 2022 .

[24]  F. Fornai,et al.  The role of the locus coeruleus in the development of Parkinson's disease , 2000, Neuroscience & Biobehavioral Reviews.

[25]  F. Fornai,et al.  Similar increases in extracellular lactic acid in the limbic system during epileptic and/or olfactory stimulation , 2000, Neuroscience.

[26]  Mustafa M. Husain,et al.  Vagus nerve stimulation: a new tool for brain research and therapy∗ , 2000, Biological Psychiatry.

[27]  Nicole C. Rust,et al.  Norepinephrine-Deficient Mice Have Increased Susceptibility to Seizure-Inducing Stimuli , 1999, The Journal of Neuroscience.

[28]  F. Fornai,et al.  Cholinergic and noradrenergic afferents influence the functional properties of the postnatal visual cortex in rats , 1999, Visual Neuroscience.

[29]  K. Gale,et al.  Regulation of Limbic Motor Seizures by GABA and Glutamate Transmission in Nucleus Tractus Solitarius , 1999, Epilepsia.

[30]  M. Vergnes,et al.  Spatial and Temporal Relationships between C-Fos Expression and Kindling of Audiogenic Seizures in Wistar Rats , 1999, Experimental Neurology.

[31]  D. Woldbye Antiepileptic effects of NPY on pentylenetetrazole seizures , 1998, Regulatory Peptides.

[32]  Y. Kawaguchi,et al.  Noradrenergic Excitation and Inhibition of GABAergic Cell Types in Rat Frontal Cortex , 1998, The Journal of Neuroscience.

[33]  S. Krahl,et al.  Locus Coeruleus Lesions Suppress the Seizure‐Attenuating Effects of Vagus Nerve Stimulation , 1998, Epilepsia.

[34]  S. Stanford,et al.  A partial noradrenergic lesion induced by DSP-4 increases extracellular noradrenaline concentration in rat frontal cortex: a microdialysis study in vivo , 1998, Psychopharmacology.

[35]  J. McNamara,et al.  A Point Mutation (D79N) of the α2A Adrenergic Receptor Abolishes the Antiepileptogenic Action of Endogenous Norepinephrine , 1998, The Journal of Neuroscience.

[36]  P. Jobe,et al.  Anticonvulsant effect of enhancement of noradrenergic transmission in the superior colliculus in genetically epilepsy-prone rats (GEPRs): a microinjection study , 1998, Brain Research.

[37]  E. J. Simon,et al.  Activation of fos in mouse amygdala by local infusion of norepinephrine or atipamezole , 1997, Brain Research.

[38]  P. J. Larsen,et al.  Powerful inhibition of kainic acid seizures by neuropeptide Y via Y5-like receptors , 1997, Nature Medicine.

[39]  M. Proctor,et al.  The role of nitric oxide in focally-evoked limbic seizures , 1997, Neuroscience.

[40]  G Tononi,et al.  Neuronal Gene Expression in the Waking State: A Role for the Locus Coeruleus , 1996, Science.

[41]  Richard Hawkes,et al.  Absence Epilepsy in Tottering Mutant Mice Is Associated with Calcium Channel Defects , 1996, Cell.

[42]  J W Dailey,et al.  Antidepressants and seizures: clinical anecdotes overshadow neuroscience. , 1996, Biochemical pharmacology.

[43]  G. Corsini,et al.  Region- and neurotransmitter-dependent species and strain differences in DSP-4-induced monoamine depletion in rodents. , 1996, Neurodegeneration : a journal for neurodegenerative disorders, neuroprotection, and neuroregeneration.

[44]  R. Szymusiak,et al.  The α2 adrenoreceptor agonist clonidine suppresses seizures, whereas the α2 adrenoreceptor antagonist idazoxan promotes seizures: Pontine microinfusion studies of amygdala-kindled kittens , 1996, Brain Research.

[45]  R. Palmiter,et al.  Sensitivity to leptin and susceptibility to seizures of mice lacking neuropeptide Y , 1996, Nature.

[46]  J. Harro,et al.  Impaired exploratory behaviour after DSP-4 treatment in rats: implications for the increased anxiety after noradrenergic denervation , 1995, European Neuropsychopharmacology.

[47]  E. Favale,et al.  Anticonvulsant effect of fluoxetine in humans , 1995, Neurology.

[48]  D. Naritoku,et al.  Regional induction of fos immunoreactivity in the brain by anticonvulsant stimulation of the vagus nerve , 1995, Epilepsy Research.

[49]  K. Ilett,et al.  Antidepressant Toxicity and the Need for Identification and Concentration Monitoring in Overdose , 1995, Clinical pharmacokinetics.

[50]  M. Culic,et al.  Effect of neurotoxin DSP4 on EEG power spectra in the rat acute model of epilepsy , 1995, Neuroscience Letters.

[51]  M. Subhash,et al.  Effect of chronic administration of phenytoin on regional monoamine levels in rat brain , 1995, Neurochemical Research.

[52]  R. Palmiter,et al.  Noradrenaline is essential for mouse fetal development , 1995, Nature.

[53]  A. Gundlach,et al.  Noradrenergic regulation of immediate early gene expression in rat forebrain: differential effects of αl- and α2-adrenoceptor drugs , 1995 .

[54]  F. Bloom,et al.  Psychopharmacology: The Fourth Generation of Progress , 1995 .

[55]  M. Sabatino,et al.  Locus coeruleus noradrenaline system and focal penicillin hippocampal epilepsy: Neurophysiological study , 1994, Epilepsy Research.

[56]  A. Björklund,et al.  Seizure Development and Noradrenaline Release in Kindling Epilepsy after Noradrenergic Reinnervation of the Subcortically Deafferented Hippocampus by Superior Cervical Ganglion or Fetal Locus Coeruleus Grafts , 1994, Experimental Neurology.

[57]  L. Limbird,et al.  Mutation of an aspartate residue highly conserved among G-protein-coupled receptors results in nonreciprocal disruption of alpha 2-adrenergic receptor-G-protein interactions. A negative charge at amino acid residue 79 forecasts alpha 2A-adrenergic receptor sensitivity to allosteric modulation by mon , 1994, The Journal of biological chemistry.

[58]  T. Ogawa,et al.  Regulation of basal release of GABA by noradrenaline in the kitten visual cortex , 1994, Neuroreport.

[59]  M. Subhash,et al.  Alterations in monoamine levels in discrete regions of rat brain after chronic administration of carbamazepine , 1994, Neurochemical Research.

[60]  G. Aston-Jones,et al.  Locus coeruleus neurons in monkey are selectively activated by attended cues in a vigilance task , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[61]  M. Proctor,et al.  Focal intracerebral elevation of L-lactate is anticonvulsant. , 1994, European journal of pharmacology.

[62]  M. Subhash,et al.  Sodium valproate induced alterations in monoamine levels in different regions of the rat brain , 1994, Neurochemistry International.

[63]  R. Browning,et al.  Role of Norepinephrine in Forebrain and Brainstem Seizures: Chemical Lesioning of Locus Ceruleus with DSP4 , 1994, Experimental Neurology.

[64]  T B Kuo,et al.  Power spectral analysis of electroencephalographic desynchronization induced by cocaine in rats: Correlation with microdialysis evaluation of dopaminergic neurotransmission at the medial prefrontal cortex , 1994, Synapse.

[65]  A. Björklund,et al.  Characterization of in Vivo Noradrenaline Release from Superior Cervical Ganglia or Fetal Locus Coeruleus Transplanted to the Subcortically Deafferented Hippocampus in the Rat , 1993, Experimental Neurology.

[66]  O. Lindvall,et al.  Specific Functions of Grafted Locus Coeruleus Neurons in the Kindling Model of Epilepsy , 1993, Experimental Neurology.

[67]  P. Jobe,et al.  Noradrenergic mechanisms for the anticonvulsant effects of desipramine and yohimbine in genetically epilepsy-prone rats: studies with microdialysis , 1993, Brain Research.

[68]  M. Roisin,et al.  Galanin reduces release of endogenous excitatory amino acids in the rat hippocampus. , 1993, European journal of pharmacology.

[69]  Y. Zhang,et al.  Effect of locus coeruleus lesion on c-fos expression in the cerebral cortex caused by yohimbine injection or stress , 1993, Brain Research.

[70]  Wade K. Smith,et al.  Disease‐specific patterns of locus coeruleus cell loss , 1992, Annals of neurology.

[71]  G. Telegdy,et al.  Anticonvulsive effects of galanin administered into the central nervous system upon the picrotoxin-kindled seizure syndrome in rats , 1992, Brain Research.

[72]  T. Itoh,et al.  Presynaptic inhibition by clonidine of neurotransmitter amino acid release in various brain regions. , 1992, European journal of pharmacology.

[73]  Leander Jd Fluoxetine, a selective serotonin-uptake inhibitor, enhances the anticonvulsant effects of phenytoin, carbamazepine, and ameltolide (LY201116). , 1992 .

[74]  K. Gale,et al.  Subcortical structures and pathways involved in convulsive seizure generation. , 1992, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[75]  G. Bing,et al.  C-Fos response to administration of catecholamines into brain by microdialysis , 1991, Neuroscience Letters.

[76]  G. Bing,et al.  Noradrenergic activation of immediate early genes in rat cerebral cortex. , 1991, Brain research. Molecular brain research.

[77]  J. Noebels,et al.  Synchronous hippocampal bursting reveals network excitability defects in an epilepsy gene mutation. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[78]  J. Penny,et al.  Noradrenergic Abnormalities in the Central Nervous System of Seizure‐Naive Genetically Epilepsy‐Prone Rats , 1991, Epilepsia.

[79]  F. Gonon,et al.  An imidazoline-specific mechanism for the hypotensive effect of clonidine: a study with yohimbine and idazoxan. , 1991, The Journal of pharmacology and experimental therapeutics.

[80]  J. L. Stringer,et al.  Cholinergic and adrenergic agents modify the initiation and termination of epileptic discharges in the dentate gyrus , 1991, Neuropharmacology.

[81]  D. Woodbury,et al.  Vagal Stimulation Reduces the Severity of Maximal Electroshock Seizures in Intact Rats: Use of a Cuff Electrode for Stimulating and Recording , 1991, Pacing and clinical electrophysiology : PACE.

[82]  A. Björklund,et al.  Formation of synaptic graft-host connections by noradrenergic locus coeruleus neurons transplanted into the adult rat hippocampus , 1990, Experimental Neurology.

[83]  J. Partanen,et al.  The effects of concurrent manipulations of cholinergic and noradrenergic systems on neocortical EEG and spatial learning. , 1990, Behavioral and neural biology.

[84]  B. Flumerfelt,et al.  Efferent connections of the A1 noradrenergic cell group: A DBH immunohistochemical and PHA-L anterograde tracing study , 1990, Experimental Neurology.

[85]  P. Rutecki,et al.  Altered hippocampal network excitability in the hypernoradrenergic mutant mousetottering , 1990, Brain Research.

[86]  P. Rutecki,et al.  Anatomical, Physiological, and Theoretical Basis for the Antiepileptic Effect of Vagus Nerve Stimulation , 1990, Epilepsia.

[87]  R. Browning,et al.  Electroshock- and pentylenetetrazol-induced seizures in genetically epilepsy-prone rats (GEPRs): differences in threshold and pattern , 1990, Epilepsy Research.

[88]  M. E. Corcoran,et al.  Antikindling effects of locus coeruleus stimulation: Mediation by ascending noradrenergic projections , 1990, Experimental Neurology.

[89]  J. Fritschy,et al.  Immunohistochemical analysis of the neurotoxic effects of DSP-4 identifies two populations of noradrenergic axon terminals , 1989, Neuroscience.

[90]  C. Ribak,et al.  Differences in dopamine β-hydroxylase immunoreactivity between the brains of genetically epilepsy-prone and Sprague-Dawley rats , 1989, Epilepsy Research.

[91]  E. Abercrombie,et al.  Partial injury to central noradrenergic neurons: reduction of tissue norepinephrine content is greater than reduction of extracellular norepinephrine measured by microdialysis , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[92]  A. Björklund,et al.  Grafts of fetal locus coeruleus neurons in rat amygdala-piriform cortex suppress seizure development in hippocampal kindling , 1989, Experimental Neurology.

[93]  M. A. Ariano,et al.  Are glial cells targets of the central noradrenergic system? A review of the evidence , 1989, Brain Research Reviews.

[94]  V. Chan‐Palay,et al.  Quantitation of catecholamine neurons in the locus coeruleus in human brains of normal young and older adults and in depression , 1989, The Journal of comparative neurology.

[95]  T. Archer,et al.  Selective lesion of central dopamine or noradrenaline neuron systems in the neonatal rat: motor behavior and monoamine alterations at adult stage , 1989, Behavioural Brain Research.

[96]  J. Fairhurst,et al.  Adrenergic receptors mediate changes in c-fos mRNA levels in brain. , 1989, Brain research. Molecular brain research.

[97]  R. Browning,et al.  Regional brain abnormalities in norepinephrine uptake and dopamine beta-hydroxylase activity in the genetically epilepsy-prone rat. , 1989, The Journal of pharmacology and experimental therapeutics.

[98]  P. Jobe,et al.  Neurobiology of seizure predisposition in the genetically epilepsy-prone rat , 1989, Epilepsy Research.

[99]  J. E. Franck,et al.  Developing Genetically Epilepsy‐Prone Rats Have an Abnormal Seizure Response to Flurothyl , 1989, Epilepsia.

[100]  M. E. Corcoran Characteristics of accelerated kindling after depletion of noradrenaline in adult rats , 1988, Neuropharmacology.

[101]  O. Lindvall,et al.  Facilitation of focal cobalt-induced epilepsy after lesions of the noradrenergic locus coeruleus system , 1988, Brain Research.

[102]  D. Johnston,et al.  Noradrenergic enhancement of long-term potentiation at mossy fiber synapses in the hippocampus. , 1988, Journal of neurophysiology.

[103]  D. Mcintyre,et al.  Effect of clonidine on amygdala kindling in normal and 6-hydroxydopamine-pretreated rats , 1988, Experimental Neurology.

[104]  A. Björklund,et al.  Grafted noradrenergic neurons suppress seizure development in kindling-induced epilepsy. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[105]  A. Vezzani,et al.  Norepinephrine modulates seizures induced by quinolinic acid in rats: selective and distinct roles of alpha-adrenoceptor subtypes. , 1987, European journal of pharmacology.

[106]  J. McNamara,et al.  Alpha-2 receptors mediate an endogenous noradrenergic suppression of kindling development. , 1987, The Journal of pharmacology and experimental therapeutics.

[107]  C. Jiménez-Rivera,et al.  Effect of locus ceruleus stimulation on the development of kindled seizures , 1987, Experimental Neurology.

[108]  P. Jobe,et al.  Indices of Noradrenergic Function in the Central Nervous System of Seizure‐Naive Genetically Epilepsy‐Prone Rats , 1986, Epilepsia.

[109]  D. Benson,et al.  Depression in epilepsy. Significance and phenomenology. , 1986, Archives of neurology.

[110]  D. Savage,et al.  Angular bundle kindling is accelerated in rats with a genetic predisposition to acoustic stimulus-induced seizures , 1986, Brain Research.

[111]  R. Wong,et al.  Cellular and synaptic properties of amygdala-kindled pyriform cortex in vitro. , 1986, Journal of neurophysiology.

[112]  A. Olivier,et al.  α‐1 Adrenoceptors are decreased in human epileptic foci , 1986, Annals of neurology.

[113]  B. Jones,et al.  The efferent projections from the reticular formation and the locus coeruleus studied by anterograde and retrograde axonal transport in the rat , 1985, The Journal of comparative neurology.

[114]  K. Gale,et al.  A crucial epileptogenic site in the deep prepiriform cortex , 1985, Nature.

[115]  S. Stanford,et al.  Down-regulation of α 2- and β-adrenoceptor binding sites in rat cortex caused by amygdalar kindling , 1985, Experimental Neurology.

[116]  S. Waller,et al.  Convulsive thresholds and severity and the anticonvulsant effect of phenobarbital and phenytoin in adult rats administered 6-hydroxydopamine or 5,7-dihydroxytryptamine during postnatal development , 1985, Pharmacology Biochemistry and Behavior.

[117]  J. Growdon,et al.  Differential effects of DSP-4 administration on regional brain norepinephrine turnover in rats. , 1985, Life sciences.

[118]  J. Noebels,et al.  A single gene error of noradrenergic axon growth synchronizes central neurones , 1984, Nature.

[119]  S. Harik,et al.  The protective influence of the locus ceruleus on the blood‐brain barrier , 1984, Annals of neurology.

[120]  M. Kuhar,et al.  Distribution of α2 agonist binding sites in the rat and human central nervous system: Analysis of some functional, anatomic correlates of the pharmacologic effects of clonidine and related adrenergic agents , 1984, Brain Research Reviews.

[121]  P. Jobe,et al.  Evaluation of monoaminergic receptors in the genetically epilepsy prone rat , 1984, Experientia.

[122]  P. Jobe,et al.  Abnormalities in norepinephrine turnover rate in the central nervous system of the genetically epilepsy-prone rat , 1984, Brain Research.

[123]  C. Harley,et al.  Long-lasting potentiation of the dentate gyrus population spike by norepinephrine , 1983, Brain Research.

[124]  R. S. Jones,et al.  The action of anticonvulsant drugs on the firing of locus coeruleus neurons: selective, activating effect of carbamazepine. , 1983, European journal of pharmacology.

[125]  F. Bloom,et al.  Nucleus locus ceruleus: new evidence of anatomical and physiological specificity. , 1983, Physiological reviews.

[126]  F. Gage,et al.  Local regulation of compensatory noradrenergic hyperactivity in the partially denervated hippocampus , 1983, Nature.

[127]  I. Altman,et al.  Facilitation of neocortical kindling by depletion of forebrain noradrenaline , 1983, Brain Research.

[128]  D. Mcintyre,et al.  Differental effect of acute vs chronic desmethylimipramine on the rate of amygdala kindling in rats , 1982, Experimental Neurology.

[129]  C. Köhler,et al.  On the role of the dorsal mesencephalic tegmentum in the control of masculine sexual behavior in the rat: Effects of electrolytic lesions, ibotenic acid and DSP4 , 1982, Brain Research.

[130]  Peter Room,et al.  Divergent axon collaterals of rat locu Demonstration by a fluorescent double labeling technique , 1981, Brain Research.

[131]  F. Bloom,et al.  Nonrepinephrine-containing locus coeruleus neurons in behaving rats exhibit pronounced responses to non-noxious environmental stimuli , 1981, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[132]  F. Bloom,et al.  Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle , 1981, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[133]  P. Levitt,et al.  Mutant mouse tottering: selective increase of locus ceruleus axons in a defined single-locus mutation. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[134]  G. Jonsson,et al.  DSP4 (N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine)--a useful denervation tool for central and peripheral noradrenaline neurons. , 1981, European journal of pharmacology.

[135]  K. Satoh,et al.  Divergent projections of catecholamine neurons of the locus coeruleus as revealed by fluorescent retrograde double labeling technique , 1981, Neuroscience Letters.

[136]  D. Mcintyre Amygdala kindling in rats: Facilitation after local amygdala norepinephrine depletion with 6-hydroxydopamine , 1980, Experimental Neurology.

[137]  S. T. Mason,et al.  Role of forebrain catecholamines in amygdaloid kindling , 1980, Brain Research.

[138]  R. Gross,et al.  Effects of reserpine, propranolol, and aminophylline on seizure activity and CNS cyclic nucleotides , 1979, Annals of neurology.

[139]  A. Picchioni,et al.  Audiogenic seizure susceptible rats. , 1979, Federation proceedings.

[140]  S. T. Mason,et al.  Catecholamines and convulsions , 1979, Brain Research.

[141]  B. Pappas,et al.  Potentiation of amygdala kindling in adult or infant rats by injections of 6-hydroxydopamine , 1979, Experimental Neurology.

[142]  R. Oishi,et al.  Possible involvement of brainstem norepinephrine in pentylenetetrazol convulsions in rats , 1979, Pharmacology Biochemistry and Behavior.

[143]  J. Dymecki,et al.  Audiogenic seizures in rats: relation to noradrenergic neurons of the locus coeruleus. , 1978, Acta physiologica Polonica.

[144]  J. Fallon,et al.  Catecholamine innervation of the basal forebrain III. Olfactory bulb, anterior olfactory nuclei, olfactory tubercle and piriform cortex , 1978, The Journal of comparative neurology.

[145]  B. Libet,et al.  Suppression of an Epileptiform Type of Electrocortical Activity in the Rat by Stimulation in the Vicinity of Locus Coeruleus , 1977, Epilepsia.

[146]  D. G. Ward,et al.  Locus coeruleus complex: elicitation of a pressor response and a brain stem region necessary for its occurence , 1976, Brain Research.

[147]  Floyd E. Bloom,et al.  The Biochemical Basis of Neuropharmacology , 1978 .

[148]  B. R. Madan,et al.  Anticonvulsant activity of some β-adrenoceptor blocking agents in mice , 1974 .

[149]  P. Lidbrink,et al.  NORADRENALINE NERVE TERMINALS IN THE CEREBRAL CORTEX: EFFECTS ON NORADRENALINE UPTAKE AND STORAGE FOLLOWING AXONAL LESION WITH 6‐HYDROXYDOPAMINE , 1974, Journal of neurochemistry.

[150]  R. Racine,et al.  Effects of atropine, reserpine, 6-hydroxydopamine, and handling on seizure development in the rat. , 1973, Experimental neurology.

[151]  R. Racine,et al.  Modification of seizure activity by electrical stimulation. II. Motor seizure. , 1972, Electroencephalography and clinical neurophysiology.

[152]  M. Jouvet,et al.  Biogenic amines and the states of sleep. , 1969, Science.

[153]  W. Murmann,et al.  Central nervous system effects of four β‐adrenergic receptor blocking agents , 1966 .

[154]  G GOERANSSON,et al.  THE METABOLISM OF FATTY ACIDS IN THE RAT. VI. ARACHIDONIC ACID. , 1965, Acta physiologica Scandinavica.

[155]  K. Fuxe,et al.  Evidence for the existence of monoamine neurons in the central nervous system , 1965, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[156]  K. Johansen REGIONAL DISTRIBUTION OF CIRCULATING BLOOD DURING SUBMERSION ASPHYXIA IN THE DUCK. , 1964, Acta physiologica Scandinavica.

[157]  Richard L. Sidman,et al.  Tottering- a neuromuscular mutation in the mouse and its linkage with oligosyndactylism. , 1962 .

[158]  G. Chen,et al.  A Facilitation Action of Reserpine on the Central Nervous System , 1954, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine.

[159]  A. Brodal,et al.  Neurological Anatomy in Relation to Clinical Medicine , 1950 .

[160]  T. Archer,et al.  DSP4-induced two-way active avoidance impairment in rats: Involvement of central and not peripheral noradrenaline depletion , 2004, Psychopharmacology.

[161]  C. Degiorgio Surgical anatomy, implantation technique, and operative complications , 2001 .

[162]  D. Morilak,et al.  Changes in Tyrosine Hydroxylase mRNA Expression in the Rat Locus Coeruleus Following Acute or Chronic Treatment with Valproic Acid , 2000, Neuropsychopharmacology.

[163]  J. Wernicke,et al.  A noradrenergic and serotonergic hypothesis of the linkage between epilepsy and affective disorders. , 1999, Critical reviews in neurobiology.

[164]  Mark S. Seidenberg,et al.  Co-morbid psychiatric disorder in chronic epilepsy: recognition and etiology of depression. , 1999, Neurology.

[165]  Dean K. Naritoku,et al.  Enhanced recognition memory following vagus nerve stimulation in human subjects , 1999, Nature Neuroscience.

[166]  T. Dunwiddie,et al.  Adenosine and suppression of seizures. , 1999, Advances in neurology.

[167]  S. Dunnett,et al.  6-Hydroxydopamine Lesions of Nigrostriatal Neurons as an Animal Model of Parkinson’s Disease , 1994 .

[168]  P. Jobe,et al.  Anticonvulsant effects of intracerebroventricularly administered norepinephrine are potentiated in the presence of monoamine oxidase inhibition in severe seizure genetically epilepsy-prone rats (GEPR-9s). , 1993, Life sciences.

[169]  P. Jobe,et al.  Serotonergic abnormalities in the central nervous system of seizure-naive genetically epilepsy-prone rats. , 1992, Life sciences.

[170]  N. Ludvig,et al.  Scope and contribution of genetic models to an understanding of the epilepsies. , 1991, Critical reviews in neurobiology.

[171]  G. Aston-Jones,et al.  Discharge of noradrenergic locus coeruleus neurons in behaving rats and monkeys suggests a role in vigilance. , 1991, Progress in brain research.

[172]  D. Kendall,et al.  The influence of adrenalectomy on α-adrenoceptor responses in rat cerebral cortex slices , 1990 .

[173]  D. Chadwick The epidemiology of drug resistant epilepsy and adverse effects of antiepileptic drugs. , 1990, Acta neurochirurgica. Supplementum.

[174]  C. Faingold The genetically epilepsy-prone rat. , 1988, General pharmacology.

[175]  G. Paxinos The Rat nervous system , 1985 .

[176]  J. Voogd,et al.  The human central nervous system : a synopsis and atlas , 1978 .

[177]  A. Picchioni,et al.  Role of brain norepinephrine in audiogenic seizure in the rat. , 1973, The Journal of pharmacology and experimental therapeutics.

[178]  K. Fuxe,et al.  EVIDENCE FOR THE EXISTENCE OF MONOAMINE-CONTAINING NEURONS IN THE CENTRAL NERVOUS SYSTEM. I. DEMONSTRATION OF MONOAMINES IN THE CELL BODIES OF BRAIN STEM NEURONS. , 1964, Acta physiologica Scandinavica. Supplementum.

[179]  Russell Gv The nucleus locus coeruleus (dorsolateralis tegmenti). , 1955, Texas reports on biology and medicine.