Convergence of an approximation for rotationally symmetric two-phase lipid bilayer membranes

We consider a diffuse interface approximation for the lipid phases of rotationally symmetric two-phase bilayer membranes and rigorously derive its $\Gamma$-limit. In particular, we prove that limit vesicles are $C^1$ across interfaces, which justifies a regularity assumption that is widely made in formal asymptotic and numerical studies. Moreover, a limit membrane may consist of several topological spheres, which are connected at the axis of revolution and resemble complete buds of the vesicle.

[1]  R. Lipowsky,et al.  Shape transformations of vesicles with intramembrane domains. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[2]  Z C Tu,et al.  Lipid membranes with free edges. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  Michael Helmers,et al.  Kinks in two-phase lipid bilayer membranes , 2016, 1603.02721.

[4]  Q. Du,et al.  Modelling and simulations of multi-component lipid membranes and open membranes via diffuse interface approaches , 2006, Journal of Mathematical Biology.

[5]  U. Seifert,et al.  Morphology of vesicles , 1995 .

[6]  Giovanni Alberti,et al.  Variational models for phase transitions, an approach via Γ-convergence , 2000 .

[7]  P. Canham The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. , 1970, Journal of theoretical biology.

[8]  Leon Simon,et al.  Lectures on Geometric Measure Theory , 1984 .

[9]  R. Templer,et al.  Gaussian curvature modulus of an amphiphilic monolayer , 1998 .

[10]  Andrea Braides Γ-convergence for beginners , 2002 .

[11]  Charles M. Elliott,et al.  A Surface Phase Field Model for Two-Phase Biological Membranes , 2010, SIAM J. Appl. Math..

[12]  J. Käs,et al.  Budding and fission of vesicles. , 1993, Biophysical journal.

[13]  M. Morandotti,et al.  Global minimizers for axisymmetric multiphase membranes , 2012, 1204.6673.

[14]  Seifert,et al.  Shape transformations of vesicles: Phase diagram for spontaneous- curvature and bilayer-coupling models. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[15]  Axel Voigt,et al.  Phase-field modeling of the dynamics of multicomponent vesicles: Spinodal decomposition, coarsening, budding, and fission. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  L. Modica The gradient theory of phase transitions and the minimal interface criterion , 1987 .

[17]  M. Kozlov,et al.  The gaussian curvature elastic modulus of N-monomethylated dioleoylphosphatidylethanolamine: relevance to membrane fusion and lipid phase behavior. , 2004, Biophysical journal.

[18]  Peter M. Topping,et al.  Relating diameter and mean curvature for submanifolds of Euclidean space , 2008 .

[19]  W. Helfrich Elastic Properties of Lipid Bilayers: Theory and Possible Experiments , 1973, Zeitschrift fur Naturforschung. Teil C: Biochemie, Biophysik, Biologie, Virologie.

[20]  Watt W. Webb,et al.  Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension , 2003, Nature.

[21]  K. Takiguchi,et al.  Opening-up of liposomal membranes by talin. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[22]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[23]  Charles M. Elliott,et al.  Modeling and computation of two phase geometric biomembranes using surface finite elements , 2010, J. Comput. Phys..

[24]  E. Evans,et al.  Bending resistance and chemically induced moments in membrane bilayers. , 1974, Biophysical journal.

[25]  T. Banchoff,et al.  Differential Geometry of Curves and Surfaces , 2010 .