Zero-crossover electrochemical CO2 reduction to ethylene with co-production of valuable chemicals

[1]  M. Bremer,et al.  Intrinsic bipolar membrane characteristics dominate the effects of flow orientation and external pH-profile on the membrane voltage , 2021 .

[2]  H. Yadegari,et al.  Glycerol Oxidation Pairs with Carbon Monoxide Reduction for Low-Voltage Generation of C2 and C3 Product Streams , 2021, ACS Energy Letters.

[3]  De Chen,et al.  Glycolic Acid Production from Ethylene Glycol via Sustainable Biomass Energy: Integrated Conceptual Process Design and Comparative Techno-economic–Society–Environment Analysis , 2021, ACS Sustainable Chemistry & Engineering.

[4]  Minrui Gao,et al.  Rigorous assessment of CO2 electroreduction products in a flow cell , 2021, Energy & Environmental Science.

[5]  R. Dinsdale,et al.  Challenges in scale‐up of electrochemical CO 2 reduction to formate integrated with product extraction using electrodialysis , 2021, Journal of Chemical Technology & Biotechnology.

[6]  F. P. García de Arquer,et al.  CO2 electrolysis to multicarbon products in strong acid , 2021, Science.

[7]  K. Bouzek,et al.  Electrocatalysts for the hydrogen evolution reaction in alkaline and neutral media. A comparative review , 2021 .

[8]  M. Ma,et al.  A Comprehensive Approach to Investigate CO2 Reduction Electrocatalysts at High Current Densities , 2021, Accounts of Materials Research.

[9]  T. Schmidt,et al.  Investigation and Optimisation of Operating Conditions for Low-Temperature CO2 Reduction to CO in a Forward-Bias Bipolar-Membrane Electrolyser , 2021 .

[10]  Wilson A. Smith,et al.  Orientation of a bipolar membrane determines the dominant ion and carbonic species transport in membrane electrode assemblies for CO2 reduction , 2021, Journal of materials chemistry. A.

[11]  Muhammad M. Rahman,et al.  Seawater Electrolysis for Hydrogen Production: A Solution Looking for a Problem? , 2021, Energy & Environmental Science.

[12]  Jun-Wei Lim,et al.  A review on advances in green treatment of glycerol waste with a focus on electro-oxidation pathway. , 2021, Chemosphere.

[13]  Xin‐Yao Yu,et al.  Accelerating the oxygen evolution reaction kinetics of Co3O4 in neutral electrolyte by decorating RuO2. , 2021, Chemical communications.

[14]  E. Sargent,et al.  Ethylene Electrosynthesis: A Comparative Techno-economic Analysis of Alkaline vs Membrane Electrode Assembly vs CO2–CO–C2H4 Tandems , 2021 .

[15]  Christine M. Gabardo,et al.  Designing anion exchange membranes for CO2 electrolysers , 2021, Nature Energy.

[16]  C. Janáky,et al.  Coupling electrochemical carbon dioxide conversion with value-added anode processes: An emerging paradigm , 2021, Current Opinion in Electrochemistry.

[17]  E. Sargent,et al.  Suppressing the liquid product crossover in electrochemical CO2 reduction , 2021, SmartMat.

[18]  P. Kenis,et al.  Electrochemical CO2-to-ethylene conversion on polyamine-incorporated Cu electrodes , 2020, Nature Catalysis.

[19]  Jeremy L. Hitt,et al.  Improving the efficiency of CO2 electrolysis by using a bipolar membrane with a weak-acid cation exchange layer , 2020, Nature Chemistry.

[20]  Scott M. Paap,et al.  Techno-Economic Analysis: Best Practices and Assessment Tools. , 2020 .

[21]  G. Kibria,et al.  Comparative techno-economic and life-cycle assessment of power-to-methanol synthesis pathways , 2020, Applied Energy.

[22]  Matthew W. Kanan,et al.  The future of low-temperature carbon dioxide electrolysis depends on solving one basic problem , 2020, Nature Communications.

[23]  P. Kenis,et al.  Selective Electrooxidation of Glycerol to Formic Acid over Carbon Supported Ni1–xMx (M = Bi, Pd, and Au) Nanocatalysts and Coelectrolysis of CO2 , 2020, ACS Applied Energy Materials.

[24]  S. McCoy,et al.  Comparative life cycle assessment of electrochemical upgrading of CO2 to fuels and feedstocks , 2020, Green Chemistry.

[25]  Sung-Fu Hung,et al.  High-Rate and Efficient Ethylene Electrosynthesis Using a Catalyst/Promoter/Transport Layer , 2020 .

[26]  I. Chorkendorff,et al.  Role of ion-selective membranes in the carbon balance for CO2 electroreduction via gas diffusion electrode reactor designs† , 2020, Chemical science.

[27]  S. Thiele,et al.  Bipolar Membrane Electrode Assemblies for Water Electrolysis , 2020 .

[28]  Haotian Wang,et al.  Electrochemical CO2 reduction to high-concentration pure formic acid solutions in an all-solid-state reactor , 2020, Nature Communications.

[29]  Weerakorn Ongsakul,et al.  A comprehensive techno-economic analysis for optimally placed wind farms , 2020 .

[30]  S. Tingry,et al.  Enhanced electrocatalytic activity and selectivity of glycerol oxidation triggered by nanoalloyed silver–gold nanocages directly grown on gas diffusion electrodes , 2020, Journal of Materials Chemistry A.

[31]  Jeehoon Han,et al.  Comprehensive analysis of two catalytic processes to produce formic acid from carbon dioxide , 2020 .

[32]  A. H. Shamsuddin,et al.  Techno-Economic Analysis of CO2 Capture Technologies in Offshore Natural Gas Field: Implications to Carbon Capture and Storage in Malaysia , 2020, Processes.

[33]  David Sinton,et al.  CO2 electrolysis to multicarbon products at activities greater than 1 A cm−2 , 2020, Science.

[34]  S. Garg,et al.  Advances and challenges in electrochemical CO2reduction processes: an engineering and design perspective looking beyond new catalyst materials , 2020, Journal of Materials Chemistry A.

[35]  Ezra L. Clark,et al.  Insights into the Carbon Balance for CO2 Electroreduction on Cu using Gas Diffusion Electrode Reactor Designs , 2020, Energy & Environmental Science.

[36]  Christine M. Gabardo,et al.  Catalyst synthesis under CO2 electroreduction favours faceting and promotes renewable fuels electrosynthesis , 2019, Nature Catalysis.

[37]  Christine M. Gabardo,et al.  Molecular tuning of CO2-to-ethylene conversion , 2019, Nature.

[38]  Christine M. Gabardo,et al.  Continuous Carbon Dioxide Electroreduction to Concentrated Multi-carbon Products Using a Membrane Electrode Assembly , 2019, Joule.

[39]  Jianlin Shi,et al.  Nickel-molybdenum nitride nanoplate electrocatalysts for concurrent electrolytic hydrogen and formate productions , 2019, Nature Communications.

[40]  G. Gruter,et al.  The potential of oxalic – and glycolic acid based polyesters (review). Towards CO2 as a feedstock (Carbon Capture and Utilization – CCU) , 2019, European Polymer Journal.

[41]  Hyunjoon Lee,et al.  General technoeconomic analysis for electrochemical coproduction coupling carbon dioxide reduction with organic oxidation , 2019, Nature Communications.

[42]  Fikile R. Brushett,et al.  A General Technoeconomic Model for Evaluating Emerging Electrolytic Processes , 2019, Energy Technology.

[43]  E. Baranova,et al.  Study on catalyst selection for electrochemical valorization of glycerol , 2019, Sustainable Energy & Fuels.

[44]  Paul J. A. Kenis,et al.  Co-electrolysis of CO2 and glycerol as a pathway to carbon chemicals with improved technoeconomics due to low electricity consumption , 2019, Nature Energy.

[45]  J. Nørskov,et al.  Progress and Perspectives of Electrochemical CO2 Reduction on Copper in Aqueous Electrolyte. , 2019, Chemical reviews.

[46]  Christine M. Gabardo,et al.  Electrochemical CO2 Reduction into Chemical Feedstocks: From Mechanistic Electrocatalysis Models to System Design , 2019, Advanced materials.

[47]  M. Bettach,et al.  Comparative study of K2SO4 production by wet conversion from phosphogypsum and synthetic gypsum , 2019, Journal of Materials Research and Technology.

[48]  Hyunjoo J. Lee,et al.  Electrochemical CO2 reduction using alkaline membrane electrode assembly on various metal electrodes , 2019, Journal of CO2 Utilization.

[49]  T. Jaramillo,et al.  What would it take for renewably powered electrosynthesis to displace petrochemical processes? , 2019, Science.

[50]  L. Lutz,et al.  Low-cost high-efficiency system for solar-driven conversion of CO2 to hydrocarbons , 2019, Proceedings of the National Academy of Sciences.

[51]  Beomil Kim,et al.  Towards Higher Rate Electrochemical CO2 Conversion: From Liquid-Phase to Gas-Phase Systems , 2019, Catalysts.

[52]  Stefan Reichelstein,et al.  Economics of converting renewable power to hydrogen , 2019, Nature Energy.

[53]  H. Dau,et al.  Uncovering The Role of Oxygen in Ni-Fe(OxHy) Electrocatalysts using In situ Soft X-ray Absorption Spectroscopy during the Oxygen Evolution Reaction , 2019, Scientific Reports.

[54]  P. Balcombe,et al.  Levelized cost of CO2 mitigation from hydrogen production routes , 2019, Energy & Environmental Science.

[55]  T. Vlugt,et al.  High Pressure Electrochemical Reduction of CO2 to Formic Acid/Formate: A Comparison between Bipolar Membranes and Cation Exchange Membranes , 2019, Industrial & engineering chemistry research.

[56]  Thomas J. Schmidt,et al.  Design Principles of Bipolar Electrochemical Co-Electrolysis Cells for Efficient Reduction of Carbon Dioxide from Gas Phase at Low Temperature , 2019, Journal of The Electrochemical Society.

[57]  D. Gracias,et al.  Electrocatalytic Oxidation of Glycerol on Platinum , 2018, The Journal of Physical Chemistry C.

[58]  Werner Weindorf,et al.  Techno-economic assessment of a renewable bio-jet-fuel production using power-to-gas , 2018, Applied Energy.

[59]  Jun‐Jie Zhu,et al.  A Highly Porous Copper Electrocatalyst for Carbon Dioxide Reduction , 2018, Advanced materials.

[60]  Michael B. Ross,et al.  A Surface Reconstruction Route to High Productivity and Selectivity in CO2 Electroreduction toward C2+ Hydrocarbons , 2018, Advanced materials.

[61]  Rou Cao,et al.  Integrated process for scalable bioproduction of glycolic acid from cell catalysis of ethylene glycol. , 2018, Bioresource technology.

[62]  Kus Hidajat,et al.  Design, Optimization, and Retrofit of the Formic Acid Process I: Base Case Design and Dividing-Wall Column Retrofit , 2018, Industrial & Engineering Chemistry Research.

[63]  Christine M. Gabardo,et al.  CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface , 2018, Science.

[64]  Ryszard Wycisk,et al.  Bipolar Membranes Inhibit Product Crossover in CO2 Electrolysis Cells , 2018 .

[65]  Feng Jiao,et al.  General Techno-Economic Analysis of CO2 Electrolysis Systems , 2018 .

[66]  Hartmut Spliethoff,et al.  Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: A review , 2018 .

[67]  S. Ntais,et al.  Electrochemical modification of nickel surfaces for efficient glycerol electrooxidation , 2018 .

[68]  Curtis P. Berlinguette,et al.  Electrolysis of Gaseous CO2 to CO in a Flow Cell with a Bipolar Membrane , 2018 .

[69]  Zhichuan J. Xu,et al.  Electrochemical production of lactic acid from glycerol oxidation catalyzed by AuPt nanoparticles , 2017 .

[70]  A. Javey,et al.  Efficient solar-driven electrochemical CO2 reduction to hydrocarbons and oxygenates , 2017 .

[71]  Jeehoon Han,et al.  Coproducing Value-added Chemicals and Hydrogen with Electrocatalytic Glycerol Oxidation Technology: Experimental and Techno-economic Investigations , 2017 .

[72]  S. Haigh,et al.  Galvanic replacement reaction: recent developments for engineering metal nanostructures towards catalytic applications. , 2017, Chemical communications.

[73]  Wilhelm Kuckshinrichs,et al.  Economic Analysis of Improved Alkaline Water Electrolysis , 2017, Front. Energy Res..

[74]  Curtis P. Berlinguette,et al.  Electrolysis of CO2 to Syngas in Bipolar Membrane-Based Electrochemical Cells , 2016 .

[75]  T. Napporn,et al.  Electrochemical Reactivity at Free and Supported Gold Nanocatalysts Surface , 2016 .

[76]  Benjamin Engel,et al.  Analysis Synthesis And Design Of Chemical Processes , 2016 .

[77]  A. Salleo,et al.  Multi-phase microstructures drive exciton dissociation in neat semicrystalline polymeric semiconductors , 2015 .

[78]  T. Napporn,et al.  Kinetic Investigations of Glycerol Oxidation Reaction on Ni/C , 2015, Electrocatalysis.

[79]  G. Hutchings,et al.  Glycerol oxidation using gold-containing catalysts. , 2015, Accounts of chemical research.

[80]  Charles C. L. McCrory,et al.  Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. , 2015, Journal of the American Chemical Society.

[81]  A. Marshall,et al.  Influence of gold nanoparticle loading in Au/C on the activity towards electrocatalytic glycerol oxidation , 2015 .

[82]  Kun Wang,et al.  Nickel L-edge and K-edge X-ray absorption spectroscopy of non-innocent Ni[S₂C₂(CF₃)₂]₂(n) series (n = -2, -1, 0): direct probe of nickel fractional oxidation state changes. , 2014, Dalton transactions.

[83]  Alexey Serov,et al.  Self-supported Pd(x)Bi catalysts for the electrooxidation of glycerol in alkaline media. , 2014, Journal of the American Chemical Society.

[84]  T. Napporn,et al.  Studies of the reaction products resulted from glycerol electrooxidation on Ni-based materials in alkaline medium , 2014 .

[85]  Charles C. L. McCrory,et al.  Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. , 2013, Journal of the American Chemical Society.

[86]  Dong Liu,et al.  Facile synthesis of dendritic gold nanostructures with hyperbranched architectures and their electrocatalytic activity toward ethanol oxidation. , 2013, ACS applied materials & interfaces.

[87]  P. Fornasiero,et al.  Electrooxidation of ethylene glycol and glycerol on Pd-(Ni-Zn)/C anodes in direct alcohol fuel cells. , 2013, ChemSusChem.

[88]  Fredric Bauer,et al.  Biogas upgrading - Review of commercial technologies , 2013 .

[89]  H. Razmi,et al.  Glycerol electrooxidation on Pd, Pt and Au nanoparticles supported on carbon ceramic electrode in alkaline media , 2012 .

[90]  M. Simões,et al.  Electrochemical valorisation of glycerol. , 2012, ChemSusChem.

[91]  Armand J. Atanacio,et al.  Mercury vapor sensor enhancement by nanostructured gold deposited on nickel surfaces using galvanic replacement reactions , 2012 .

[92]  D. Steward,et al.  H2A Central Hydrogen Production Model, Version 3 User Guide (DRAFT) , 2012 .

[93]  Simon Bourne,et al.  The future of fuel: The future of hydrogen , 2012 .

[94]  Stanley C. S. Lai,et al.  Electrocatalytic oxidation of alcohols on gold in alkaline media: base or gold catalysis? , 2011, Journal of the American Chemical Society.

[95]  Stève Baranton,et al.  Electro-oxidation of glycerol at Pd based nano-catalysts for an application in alkaline fuel cells for chemicals and energy cogeneration , 2010 .

[96]  G. Hutchings,et al.  Oxidation of glycerol to glycolate by using supported gold and palladium nanoparticles. , 2009, ChemSusChem.

[97]  S. Minko,et al.  Metallic nickel nanorod arrays embedded into ordered block copolymer templates , 2007 .

[98]  C. B. Andersen,et al.  Understanding Carbonate Equilibria by Measuring Alkalinity in Experimental and Natural Systems , 2002 .

[99]  Y. Hori,et al.  Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution , 1990 .

[100]  A. Dickson An exact definition of total alkalinity and a procedure for the estimation of alkalinity and total inorganic carbon from titration data , 1981 .

[101]  T. Breugelmans,et al.  Insight in the behavior of bipolar membrane equipped carbon dioxide electrolyzers at low electrolyte flowrates , 2022 .