GPU accelerated manifold correction method for spinning compact binaries

[1]  Xin Wu,et al.  Simulations of Dissipative Circular Restricted Three-body Problems Using the Velocity-scaling Correction Method , 2018 .

[2]  Junjie Luo,et al.  Applying explicit symplectic-like methods to nonconservative nonseparable systems , 2017 .

[3]  Xin Wu,et al.  EXPLICIT SYMPLECTIC-LIKE INTEGRATORS WITH MIDPOINT PERMUTATIONS FOR SPINNING COMPACT BINARIES , 2017 .

[4]  Xin Wu,et al.  Implementation of the velocity scaling method for elliptic restricted three-body problems , 2016 .

[5]  Xuan Li,et al.  GPU‐accelerated finite‐difference time‐domain method for dielectric media based on CUDA , 2016 .

[6]  Xin Wu,et al.  Second post-Newtonian Lagrangian dynamics of spinning compact binaries , 2016, 1604.05810.

[7]  Quan Zhang,et al.  A fast calculation method of optical transfer function using GPU parallel computation , 2015, Optical Review.

[8]  Xin 歆 Wu 伍,et al.  A Note on the Equivalence of Post-Newtonian Lagrangian and Hamiltonian Formulations , 2015, 1509.07355.

[9]  Y. Zhu,et al.  Effects of manifold correction methods on chaos indicators , 2015 .

[10]  Xin Wu,et al.  Analytical and numerical studies on differences between Lagrangian and Hamiltonian approaches at the same post-Newtonian order , 2015 .

[11]  Xin Wu,et al.  New adaptive time step symplectic integrator: an application to the elliptic restricted three-body problem , 2014 .

[12]  Xin Wu,et al.  Dynamics of the post-Newtonian circular restricted three-body problem with compact objects , 2014 .

[13]  Xin Wu,et al.  Chaos in two black holes with next-to-leading order spin–spin interactions , 2014, 1403.0378.

[14]  Xin Wu,et al.  Dynamics of spin effects of compact binaries , 2013 .

[15]  Xin Wu,et al.  On preference of Yoshida construction over Forest–Ruth fourth-order symplectic algorithm , 2013 .

[16]  Xinfa Deng,et al.  Global symplectic structure-preserving integrators for spinning compact binaries , 2010 .

[17]  S. McWilliams,et al.  Inspiral of generic black hole binaries: spin, precession and eccentricity , 2010, 1009.2533.

[18]  Rodney A. Kennedy,et al.  Parallel computation of mutual information on the GPU with application to real-time registration of 3D medical images , 2010, Comput. Methods Programs Biomed..

[19]  Alice C. Quillen,et al.  QYMSYM: A GPU-accelerated hybrid symplectic integrator that permits close encounters , 2010, 1007.3458.

[20]  Xin Wu,et al.  Manifold corrections on spinning compact binaries , 2010 .

[21]  Diego Rossinelli,et al.  GPU accelerated simulations of bluff body flows using vortex particle methods , 2010, J. Comput. Phys..

[22]  Yi Xie,et al.  Symplectic structure of post-Newtonian Hamiltonian for spinning compact binaries , 2010, 1004.4549.

[23]  Eric Darve,et al.  Large calculation of the flow over a hypersonic vehicle using a GPU , 2008, J. Comput. Phys..

[24]  Xin Wu,et al.  Extending Nacozy’s Approach to Correct All Orbital Elements for Each of Multiple Bodies , 2008 .

[25]  Amitabh Varshney,et al.  Parallel, stochastic measurement of molecular surface area. , 2008, Journal of molecular graphics & modelling.

[26]  Xin Wu,et al.  Resurvey of order and chaos in spinning compact binaries , 2008, 1004.5317.

[27]  Xin Wu,et al.  Revisit on ``Ruling out chaos in compact binary systems'' , 2007, 1004.5057.

[28]  W. Han,et al.  The adjustment-stabilization method for constrained systems , 2007, Comput. Phys. Commun..

[29]  J. Levin Chaos and order in models of black hole pairs , 2006, gr-qc/0612003.

[30]  Xin Wu,et al.  Lyapunov indices with two nearby trajectories in a curved spacetime , 2006, 1006.5251.

[31]  A. Gopakumar,et al.  Deterministic nature of conservative post-Newtonian accurate dynamics of compact binaries with leading order spin-orbit interaction , 2005, gr-qc/0511009.

[32]  T. Damour,et al.  Transition from inspiral to plunge in precessing binaries of spinning black holes , 2005, gr-qc/0508067.

[33]  A. Buonanno,et al.  The dynamics of precessing binary black holes using the post-Newtonian approximation , 2004, gr-qc/0407091.

[34]  T. Fukushima Efficient Orbit Integration by Dual Scaling for Consistency of Kepler Energy and Laplace Integral , 2003 .

[35]  N. Cornish,et al.  Chaos and damping in the post-Newtonian description of spinning compact binaries , 2003 .

[36]  Tian-Yi Huang,et al.  Computation of Lyapunov exponents in general relativity , 2003, gr-qc/0302118.

[37]  R. Folk,et al.  Optimized Forest–Ruth- and Suzuki-like algorithms for integration of motion in many-body systems , 2001, cond-mat/0110585.

[38]  A. Gopakumar,et al.  Second post-Newtonian gravitational wave polarizations for compact binaries in elliptical orbits , 2001, gr-qc/0110100.

[39]  F. Rasio,et al.  Ruling out chaos in compact binary systems. , 2001, Physical review letters.

[40]  T. Damour Coalescence of two spinning black holes: an effective one-body approach , 2001, gr-qc/0103018.

[41]  J. Levin Fate of chaotic binaries , 2000, gr-qc/0010100.

[42]  Levín,et al.  Gravity waves, chaos, and spinning compact binaries , 1999, Physical review letters.

[43]  Uri M. Ascher,et al.  Stabilization of invariants of discretized differential systems , 1997, Numerical Algorithms.

[44]  Fei Zhang Energy corrections in Hamiltonian dynamics simulations , 1996 .

[45]  Kidder,et al.  Coalescing binary systems of compact objects to (post)5/2-Newtonian order. V. Spin effects. , 1995, Physical review. D, Particles and fields.

[46]  J. Wisdom,et al.  Symplectic maps for the N-body problem. , 1991 .

[47]  R. Ruth,et al.  Fourth-order symplectic integration , 1990 .

[48]  R. F. O’Connell,et al.  The gravitational interaction: Spin, rotation, and quantum effects-a review , 1979 .

[49]  J. Baumgarte,et al.  Numerical stabilization of the differential equations of Keplerian motion , 1972 .

[50]  Xin Wu,et al.  Application of the logarithmic Hamiltonian algorithm to the circular restricted three-body problem with some post-Newtonian terms , 2015 .

[51]  P. Nacozy The use of integrals in numerical integrations of theN-body problem , 1971 .

[52]  P. Nacozy The Use of Integrals in Numerical Integrations of the N-Body Problem (Papers appear in the Proceedings of IAU Colloquium No. 10 Gravitational N-Body Problem (ed. by Myron Lecar), R. Reidel Publ. Co. , Dordrecht-Holland.) , 1971 .

[53]  D. G. Bettis,et al.  Recent developments of integrating the gravitational problem ofN-bodies , 1971 .