暂无分享,去创建一个
[1] C. Lanczos. An iteration method for the solution of the eigenvalue problem of linear differential and integral operators , 1950 .
[2] W. Arnoldi. The principle of minimized iterations in the solution of the matrix eigenvalue problem , 1951 .
[3] M. Hestenes,et al. Methods of conjugate gradients for solving linear systems , 1952 .
[4] Henry C. Thacher,et al. Applied and Computational Complex Analysis. , 1988 .
[5] Christian Berg,et al. Potential Theory on Locally Compact Abelian Groups , 1975 .
[6] L. Knizhnerman,et al. Two polynomial methods of calculating functions of symmetric matrices , 1991 .
[7] Y. Saad. Analysis of some Krylov subspace approximations to the matrix exponential operator , 1992 .
[8] C. D. Boor,et al. Divided Differences , 2005, math/0502036.
[9] L. Knizhnerman,et al. Extended Krylov Subspaces: Approximation of the Matrix Square Root and Related Functions , 1998, SIAM J. Matrix Anal. Appl..
[10] Andreas Frommer,et al. Fast CG-Based Methods for Tikhonov-Phillips Regularization , 1999, SIAM J. Sci. Comput..
[11] Artan Borici. Fast Methods for Computing the Neuberger Operator , 2000 .
[12] H. V. D. Vorst,et al. Numerical methods for the QCDd overlap operator. I. Sign-function and error bounds , 2002, hep-lat/0202025.
[13] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[14] A. Pettitt,et al. Bayesian computations and efficient algorithms for computing functions of large, sparse matrices , 2004 .
[15] Marlis Hochbruck,et al. Preconditioning Lanczos Approximations to the Matrix Exponential , 2005, SIAM J. Sci. Comput..
[16] VALERIA SIMONCINI,et al. MATRIX FUNCTIONS , 2006 .
[17] Oliver G. Ernst,et al. A Restarted Krylov Subspace Method for the Evaluation of Matrix Functions , 2006, SIAM J. Numer. Anal..
[18] Bruno Lang,et al. An iterative method to compute the sign function of a non-Hermitian matrix and its application to the overlap Dirac operator at nonzero chemical potential , 2007, Comput. Phys. Commun..
[19] Hillel Tal-Ezer,et al. On Restart and Error Estimation for Krylov Approximation of w=f(A)v , 2007, SIAM J. Sci. Comput..
[20] Christian Berg,et al. Stieltjes-Pick-Bernstein-Schoenberg and their connection to complete monotonicity , 2007 .
[21] Valeria Simoncini,et al. A New Iterative Method for Solving Large-Scale Lyapunov Matrix Equations , 2007, SIAM J. Sci. Comput..
[22] Vladimir Druskin,et al. On monotonicity of the Lanczos approximation to the matrix exponential , 2008 .
[23] A. Pettitt,et al. Fast sampling from a Gaussian Markov random field using Krylov subspace approaches , 2008 .
[24] M. Eiermann,et al. Implementation of a restarted Krylov subspace method for the evaluation of matrix functions , 2008 .
[25] Andreas Frommer,et al. MONOTONE CONVERGENCE OF THE LANCZOS APPROXIMATIONS TO MATRIX FUNCTIONS OF HERMITIAN MATRICES , 2009 .
[26] Igor Moret. Rational Lanczos approximations to the matrix square root and related functions , 2009, Numer. Linear Algebra Appl..
[27] Lothar Reichel,et al. Error Estimates and Evaluation of Matrix Functions via the Faber Transform , 2009, SIAM J. Numer. Anal..
[28] Lothar Reichel,et al. The extended Krylov subspace method and orthogonal Laurent polynomials , 2009 .
[29] Valeria Simoncini,et al. A new investigation of the extended Krylov subspace method for matrix function evaluations , 2009, Numer. Linear Algebra Appl..
[30] Chad Lieberman,et al. On Adaptive Choice of Shifts in Rational Krylov Subspace Reduction of Evolutionary Problems , 2010, SIAM J. Sci. Comput..
[31] I. Turner,et al. A restarted Lanczos approximation to functions of a symmetric matrix , 2010 .
[32] Lothar Reichel,et al. Recursion relations for the extended Krylov subspace method , 2011 .
[33] Stefan Güttel,et al. Superlinear convergence of the rational Arnoldi method for the approximation of matrix functions , 2012, Numerische Mathematik.
[34] Stefan Güttel,et al. A black-box rational Arnoldi variant for Cauchy–Stieltjes matrix functions , 2013 .
[35] S. Güttel. Rational Krylov approximation of matrix functions: Numerical methods and optimal pole selection , 2013 .
[36] Vipin Kerala Varma,et al. Conformal map and harmonic measure of the Bunimovich stadium , 2014, 1410.4932.
[37] Igor Moret,et al. The restarted shift‐and‐invert Krylov method for matrix functions , 2014, Numer. Linear Algebra Appl..
[38] Stefan Güttel,et al. Convergence of Restarted Krylov Subspace Methods for Stieltjes Functions of Matrices , 2014, SIAM J. Matrix Anal. Appl..
[39] Stefan Güttel,et al. Efficient and Stable Arnoldi Restarts for Matrix Functions Based on Quadrature , 2014, SIAM J. Matrix Anal. Appl..
[40] Stefan Güttel,et al. Generalized Rational Krylov Decompositions with an Application to Rational Approximation , 2015, SIAM J. Matrix Anal. Appl..
[41] Stefan Güttel,et al. Scaled and Squared Subdiagonal Padé Approximation for the Matrix Exponential , 2016, SIAM J. Matrix Anal. Appl..
[42] Marcel Schweitzer. Monotone convergence of the extended Krylov subspace method for Laplace–Stieltjes functions of Hermitian positive definite matrices☆ , 2016 .
[43] Matthias Rottmann,et al. Multigrid preconditioning for the overlap operator in lattice QCD , 2014, Numerische Mathematik.
[44] M. Schweitzer. Restarting and error estimation in polynomial and extended Krylov subspace methods for the approximation of matrix functions , 2018 .
[45] Igor Moret,et al. Krylov subspace methods for functions of fractional differential operators , 2017, Math. Comput..
[46] Valeria Simoncini,et al. Inexact Arnoldi residual estimates and decay properties for functions of non-Hermitian matrices , 2016, BIT Numerical Mathematics.
[47] D. Kressner,et al. Limited‐memory polynomial methods for large‐scale matrix functions , 2020, GAMM-Mitteilungen.
[48] Erin Carson,et al. On the cost of iterative computations , 2020, Philosophical Transactions of the Royal Society A.
[49] S. Güttel,et al. Topical Issue Applied and Numerical Linear Algebra (2/2) , 2020, GAMM-Mitteilungen.