暂无分享,去创建一个
[1] Trevor Hastie,et al. The Elements of Statistical Learning , 2001 .
[2] T. Louis,et al. BAYES AND EMPIRICAL BAYES METHODS FOR DATA ANALYSIS , 1996, Stat. Comput..
[3] Juliane Hahn. Inverse Problems Mathematical And Analytical Techniques With Applications To Engineering , 2016 .
[4] Dianne P. O'Leary,et al. Designing Optimal Spectral Filters for Inverse Problems , 2011, SIAM J. Sci. Comput..
[5] Dianne P. O'Leary,et al. Deblurring Images: Matrices, Spectra and Filtering , 2006, J. Electronic Imaging.
[6] Gene H. Golub,et al. Matrix computations , 1983 .
[7] K. Egiazarian,et al. Blind image deconvolution , 2007 .
[8] Ameet Talwalkar,et al. Foundations of Machine Learning , 2012, Adaptive computation and machine learning.
[9] Hsuan-Tien Lin,et al. Learning From Data , 2012 .
[10] Francisco Duarte Moura Neto,et al. An Introduction to Inverse Problems with Applications , 2012 .
[11] J. Hadamard,et al. Lectures on Cauchy's Problem in Linear Partial Differential Equations , 1924 .
[12] Albert Tarantola,et al. Inverse problem theory - and methods for model parameter estimation , 2004 .
[13] Per Christian Hansen,et al. Rank-Deficient and Discrete Ill-Posed Problems , 1996 .
[14] D. Sondermann. Best approximate solutions to matrix equations under rank restrictions , 1986 .
[15] Dianne P. O'Leary,et al. Optimal regularized low rank inverse approximation , 2015 .
[16] Alan J. Lee,et al. Linear Regression Analysis: Seber/Linear , 2003 .
[17] Philip E. Gill,et al. Practical optimization , 1981 .
[18] Emmanuel J. Candès,et al. A Singular Value Thresholding Algorithm for Matrix Completion , 2008, SIAM J. Optim..
[19] George A. F. Seber,et al. Linear regression analysis , 1977 .
[20] Bradley P. Carlin,et al. BAYES AND EMPIRICAL BAYES METHODS FOR DATA ANALYSIS , 1996, Stat. Comput..
[21] Julianne Chung,et al. Computing optimal low-rank matrix approximations for image processing , 2013, 2013 Asilomar Conference on Signals, Systems and Computers.
[22] A. Kirsch. An Introduction to the Mathematical Theory of Inverse Problems , 1996, Applied Mathematical Sciences.
[23] Vladimir Vapnik,et al. Statistical learning theory , 1998 .
[24] C. Eckart,et al. The approximation of one matrix by another of lower rank , 1936 .
[25] C. Vogel. Computational Methods for Inverse Problems , 1987 .
[26] Pierre Baldi,et al. Bioinformatics - the machine learning approach (2. ed.) , 2000 .
[27] Anatoli Torokhti,et al. Generalized Rank-Constrained Matrix Approximations , 2007, SIAM J. Matrix Anal. Appl..
[28] Jianhong Shen,et al. Deblurring images: Matrices, spectra, and filtering , 2007, Math. Comput..
[29] Alexander Shapiro,et al. Lectures on Stochastic Programming: Modeling and Theory , 2009 .
[30] Clifford H. Thurber,et al. Parameter estimation and inverse problems , 2005 .
[31] Simon Parsons,et al. Bioinformatics: The Machine Learning Approach by P. Baldi and S. Brunak, 2nd edn, MIT Press, 452 pp., $60.00, ISBN 0-262-02506-X , 2004, The Knowledge Engineering Review.
[32] Jean-Luc Starck,et al. Deconvolution and Blind Deconvolution in Astronomy , 2007 .
[33] H. Engl,et al. Regularization of Inverse Problems , 1996 .
[34] Dianne P. O'Leary,et al. Optimal Filters from Calibration Data for Image Deconvolution with Data Acquisition Error , 2012, Journal of Mathematical Imaging and Vision.
[35] E. Schmidt. Zur Theorie der linearen und nichtlinearen Integralgleichungen , 1907 .
[36] A. Ramm,et al. Inverse Problems: Mathematical and Analytical Techniques with Applications to Engineering , 2004 .
[37] G. W. Stewart,et al. Matrix Algorithms: Volume 1, Basic Decompositions , 1998 .
[38] Stephen J. Wright,et al. Numerical Optimization , 2018, Fundamental Statistical Inference.