Hydrodynamics, control and numerical modelling of absorbing wavemakers

This research investigates the effects that geometry and control have on the absorption characteristics of active wavemakers and looks at the feasibility of modelling these wavemakers in commercial computational fluid dynamic software. This thesis presents the hydrodynamic coefficients for four different types of wavemakers. The absorption characteristics of these wavemakers are analysed using different combinations of control impedance coefficients. The effect of combining both geometry and control is then investigated. Results, quantifying the absorption characteristics are then presented. It is shown that the amount of absorption for a given paddle differs greatly depending on the choice of control coefficients used to implement complex conjugate control. Increased absorption can be achieved over a broader bandwidth of frequencies when the geometry of the wavemaker is optimised for one specific frequency and the control impedance is optimised for an alternate frequency. In conjunction to this theoretical study, a numerical investigation is conducted in order to verify and validate two commercial computational fluid dynamic codes’ suitability to model the previously discussed absorbing wavemakers. ANSYS CFX and FLOW3D are used to model a physical wavemaker. Both are rigorously verified for discretisation errors and CFX is validated against linear wavemaker theory. Results show good agreement and prediction of the free surface close to the oscillating wavemaker, but problems with wave height attenuation and excessive run times were encountered.

[1]  Wang Xiantao,et al.  Active Absorption Wave Maker System for Irregular Waves , 2003 .

[2]  Michael Selwyn Longuet-Higgins,et al.  The deformation of steep surface waves on water - I. A numerical method of computation , 1976, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[3]  David D. Apsley,et al.  CFD simulation of two‐ and three‐dimensional free‐surface flow , 2003 .

[4]  Derek M. Causon,et al.  A JOINT NUMERICAL AND EXPERIMENTAL STUDY OF A SURGING POINT ABSORBING WAVE ENERGY CONVERTER (WRASPA) , 2009 .

[5]  Ching-Jer Huang,et al.  Simulation of a 3D Numerical Viscous Wave Tank , 2007 .

[6]  Johannes Spinneken,et al.  Wave Generation And Absorption Using Force-controlled Wave Machines , 2009 .

[7]  P Nebel,et al.  Maximizing the Efficiency of Wave-Energy Plant Using Complex-Conjugate Control , 1992 .

[8]  Shigeru Naito Wave Generation And Absorption In Wave Basins: Theory And Application , 2006 .

[9]  Per A. Madsen,et al.  A Boussinesq-type method for fully nonlinear waves interacting with a rapidly varying bathymetry , 2006 .

[10]  Meir Pilch Laboratory Wave-Generating Apparatus , 1953 .

[11]  I. Orlanski A Simple Boundary Condition for Unbounded Hyperbolic Flows , 1976 .

[12]  F. Harlow,et al.  Numerical Calculation of Time‐Dependent Viscous Incompressible Flow of Fluid with Free Surface , 1965 .

[13]  O. Buneman,et al.  Wave power availability in the NE Atlantic , 1976, Nature.

[14]  Moo-Hyun Kim,et al.  Numerical simulation of nonlinear wave and force generated by a wedge-shape wave maker , 2006 .

[15]  Johannes Spinneken,et al.  Theoretical Transfer Function For Force-controlled Wave Machines , 2011 .

[16]  F. Blottner,et al.  Accurate Navier-Stokes results for the hypersonic flow over a spherical nosetip , 1989 .

[17]  Hemming A. Schäffer,et al.  Review of Multidirectional Active Wave Absorption Methods , 2000 .

[18]  T. Havelock,et al.  LIX.Forced surface-waves on water , 1929 .

[19]  Jerome H. Milgram,et al.  Active water-wave absorbers , 1970, Journal of Fluid Mechanics.

[20]  Y. Ouellet,et al.  A survey of wave absorbers , 1986 .

[21]  Ling Qian,et al.  Numerical Wave Tank Study of a Wave Energy Converter In Heave , 2009 .

[22]  Alain H. Clément,et al.  Absorption of outgoing waves in a numerical wave tank using a self-adaptive boundary condition , 2000 .

[23]  John M. Niedzwecki,et al.  Fully Nonlinear Multidirectional Waves by a 3-D Viscous Numerical Wave Tank , 2001 .

[24]  Johannes Falnes,et al.  On non-causal impulse response functions related to propagating water waves , 1995 .

[25]  Alain H. Clément,et al.  Self adaptive control of a piston wave-absorber , 1998 .

[26]  Paul Taylor,et al.  Numerical Simulation of Extreme Free Surface Waves , 2008 .

[27]  D. Evans,et al.  Power From Water Waves , 1981 .

[28]  Hemming A. Schäffer,et al.  SECOND-ORDER WAVEMAKER THEORY FOR IRREGULAR WAVES , 1996 .

[29]  David Ingram,et al.  On geometric design considerations and control methodologies for absorbing wavemakers , 2011 .

[30]  K. P. Jakobsen,et al.  Deterministic combination of numerical and physical coastal wave models , 2007 .

[31]  Alexandra A E Price,et al.  New Perspectives on Wave Energy Converter Control , 2009 .

[32]  John V. Wehausen Causality and the radiation condition , 1992 .

[33]  Joao Cruz,et al.  Ocean Wave Energy , 2008 .

[34]  David Ingram,et al.  The CFD Simulation of a Lifting Hydrofoil in Close Proximity to a Free Surface , 2010 .

[35]  D. Evans A theory for wave-power absorption by oscillating bodies , 1976, Journal of Fluid Mechanics.

[36]  D. Thompson,et al.  Design Curves For Regular And Random Wave Generators , 1971 .

[37]  Christopher J. Freitas,et al.  The issue of numerical uncertainty , 2002 .

[38]  W. Cummins THE IMPULSE RESPONSE FUNCTION AND SHIP MOTIONS , 2010 .

[39]  C. W. Hirt,et al.  Volume of fluid (VOF) method for the dynamics of free boundaries , 1981 .

[40]  L. Richardson The Approximate Arithmetical Solution by Finite Differences of Physical Problems Involving Differential Equations, with an Application to the Stresses in a Masonry Dam , 1911 .

[41]  David Le Touzé,et al.  A fully-spectral 3D time-domain model for second-order simulation of wavetank experiments. Part A: Formulation, implementation and numerical properties , 2006 .

[42]  Steven W. Smith,et al.  The Scientist and Engineer's Guide to Digital Signal Processing , 1997 .

[43]  A Clement,et al.  HYDRODYNAMIC FORCES INDUCED BY A SOLITARY WAVE ON A SUBMERGED CIRCULAR CYLINDER , 1995 .

[44]  J. Romate,et al.  Absorbing boundary conditions for free surface waves , 1992 .

[45]  Stephan T. Grilli,et al.  Numerical Generation and Absorption of Fully Nonlinear Periodic Waves , 1997 .

[46]  Chiang C. Mei,et al.  POWER EXTRACTION FROM WATER WAVES , 1976 .

[47]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[48]  Ho-Hwan Chun,et al.  Numerical reproduction of fully nonlinear multi-directional waves by a viscous 3D numerical wave tank , 2004 .

[49]  J. N. Newman Analysis of wave generators and absorbers in basins , 2010 .

[50]  R. G. Dean,et al.  Forced small-amplitude water waves: a comparison of theory and experiment , 1960, Journal of Fluid Mechanics.

[51]  S. Orszag,et al.  Approximation of radiation boundary conditions , 1981 .

[52]  Johannes Falnes,et al.  Ocean Waves and Oscillating Systems: Gravity Waves on Water , 2002 .

[53]  Johannes Spinneken,et al.  Second-order wave maker theory using force-feedback control. Part I: A new theory for regular wave generation , 2009 .

[54]  Johannes Falnes,et al.  A REVIEW OF WAVE-ENERGY EXTRACTION , 2007 .

[55]  Katsuji Tanizawa,et al.  An Application of Fully Nonlinear Numerical Wave Tank to the Study On Chaotic Roll Motions , 1999 .

[56]  Weeratunge Malalasekera,et al.  An introduction to computational fluid dynamics - the finite volume method , 2007 .

[57]  N. Booij,et al.  A third‐generation wave model for coastal regions: 2. Verification , 1999 .

[58]  Alain H. Clément,et al.  A realizable force feedback-feedforward control loop for a piston wave absorber , 1993 .

[59]  F. Biesel,et al.  LES APPAREILS GÉNÉRATEURS DE HOULE EN LABORATOIRE , 1951 .

[60]  Geoffrey N. Bullock,et al.  PERFORMANCE OF A WEDGE-TYPE ABSORBING WAVE MAKER , 1989 .

[61]  Alain H. Clément,et al.  Recent Research And Development of Numerical Wave Tank - A Review , 1999 .

[62]  Stephen H. Salter Absorbing wave-makers and wide tanks , 2018, Physical Modelling in Coastal Engineering.

[63]  Alain H. Clément,et al.  Comparison of Time domain Control Law for a Piston wave Absorber , 1993 .

[64]  G.E. Moore,et al.  Cramming More Components Onto Integrated Circuits , 1998, Proceedings of the IEEE.