Block Low-Rank multifrontal solvers: complexity, performance, and scalability. (Solveurs multifrontaux exploitant des blocs de rang faible: complexité, performance et parallélisme)

We investigate the use of low-rank approximations to reduce the cost of sparse direct multifrontal solvers. Among the different matrix representations that have been proposed to exploit the low-rank property within multifrontal solvers, we focus on the Block Low-Rank (BLR) format whose simplicity and flexibility make it easy to use in a general purpose, algebraic multifrontal solver. We present different variants of the BLR factorization, depending on how the low-rank updates are performed and on the constraints to handle numerical pivoting. We first investigate the theoretical complexity of the BLR format which, unlike other formats such as hierarchical ones, was previously unknown. We prove that the theoretical complexity of the BLR multifrontal factorization is asymptotically lower than that of the full-rank solver. We then show how the BLR variants can further reduce that complexity. We provide an experimental study with numerical results to support our complexity bounds. After proving that BLR multifrontal solvers can achieve a low complexity, we turn to the problem of translating that low complexity in actual performance gains on modern architectures. We first present a multithreaded BLR factorization, and analyze its performance in shared-memory multicore environments on a large set of real-life problems. We put forward several algorithmic properties of the BLR variants necessary to efficiently exploit multicore systems by improving the arithmetic intensity and the scalability of the BLR factorization. We then move on to the distributed-memory BLR factorization, for which additional challenges are identified and addressed. The algorithms presented throughout this thesis have been implemented within the MUMPS solver. We illustrate the use of our approach in three industrial applications coming from geosciences and structural mechanics. We also compare our solver with the STRUMPACK package, based on Hierarchically Semi-Separable approximations. We conclude this thesis by reporting results on a very large problem (130 millions of unknowns) which illustrates future challenges posed by BLR multifrontal solvers at scale.

[1]  I. Štekl,et al.  Accurate viscoelastic modeling by frequency‐domain finite differences using rotated operators , 1998 .

[2]  Bernard Giroux,et al.  3D frequency-domain finite-difference viscoelastic-wave modeling using weighted average 27-point operators with optimal coefficients , 2014 .

[3]  C. Shin,et al.  An optimal 9-point, finite-difference, frequency-space, 2-D scalar wave extrapolator , 1996 .

[4]  Joseph W. H. Liu A partial pivoting strategy for sparse symmetric matrix decomposition , 1987, TOMS.

[5]  François Pellegrini,et al.  Scotch and libScotch 5.0 User's Guide , 2007 .

[6]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[7]  Patrick R. Amestoy,et al.  Towards a parallel analysis phase for a multifrontal sparse solver , 2008 .

[8]  IAIN S. DUFF,et al.  Towards Stable Mixed Pivoting Strategies for the Sequential and Parallel Solution of Sparse Symmetric Indefinite Systems , 2007, SIAM J. Matrix Anal. Appl..

[9]  Patrick R. Amestoy,et al.  Large-scale 3D EM modeling with a Block Low-Rank multifrontal direct solver , 2017 .

[10]  Michael Fehler,et al.  SEAM UPDATE: MODELS FOR EM AND GRAVITY SIMULATIONS , 2010 .

[11]  Jean-Yves L'Excellent,et al.  A study of shared-memory parallelism in a multifrontal solver , 2014, Parallel Comput..

[12]  Martin H. Gutknecht,et al.  Variants of BICGSTAB for Matrices with Complex Spectrum , 1993, SIAM J. Sci. Comput..

[13]  Jean Virieux,et al.  An overview of full-waveform inversion in exploration geophysics , 2009 .

[14]  Patrick Amestoy,et al.  An Unsymmetrized Multifrontal LU Factorization , 2000, SIAM J. Matrix Anal. Appl..

[15]  Jack J. Dongarra,et al.  Towards batched linear solvers on accelerated hardware platforms , 2015, PPOPP.

[16]  M. Warner,et al.  Anisotropic 3D full-waveform inversion , 2013 .

[17]  S. Operto,et al.  3D finite-difference frequency-domain modeling of visco-acoustic wave propagation using a massively parallel direct solver: A feasibility study , 2007 .

[18]  Denes Vigh,et al.  3D prestack plane-wave, full-waveform inversion , 2008 .

[19]  Fred G. Gustavson,et al.  Recursion leads to automatic variable blocking for dense linear-algebra algorithms , 1997, IBM J. Res. Dev..

[20]  Xiaomei Yang Rounding Errors in Algebraic Processes , 1964, Nature.

[21]  Patrick R. Amestoy,et al.  Efficient 3D frequency-domain full-waveform inversion of ocean-bottom cable data with sparse block low-rank direct solver: a real data case study from the North Sea , 2015 .

[22]  Jean Virieux,et al.  Velocity model building by 3D frequency-domain, full-waveform inversion of wide-aperture seismic data , 2008 .

[23]  Rita Streich,et al.  3D finite-difference frequency-domain modeling of controlled-source electromagnetic data: Direct solution and optimization for high accuracy , 2009 .

[24]  Mario Bebendorf,et al.  Mathematik in den Naturwissenschaften Leipzig Existence of H-Matrix Approximants to the Inverse FE-Matrix of Elliptic Operators with L ∞-Coefficients , 2003 .

[25]  Eric Darve,et al.  A fast block low-rank dense solver with applications to finite-element matrices , 2014, J. Comput. Phys..

[26]  Petros Drineas,et al.  CUR matrix decompositions for improved data analysis , 2009, Proceedings of the National Academy of Sciences.

[27]  Seid Koric,et al.  Evaluation of parallel direct sparse linear solvers in electromagnetic geophysical problems , 2016, Comput. Geosci..

[28]  Patrick Amestoy,et al.  A Fully Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling , 2001, SIAM J. Matrix Anal. Appl..

[29]  Jianlin Xia,et al.  A Parallel Geometric Multifrontal Solver Using Hierarchically Semiseparable Structure , 2016, ACM Trans. Math. Softw..

[30]  François Pellegrini,et al.  PT-Scotch: A tool for efficient parallel graph ordering , 2008, Parallel Comput..

[31]  Mario Bebendorf,et al.  Approximation of boundary element matrices , 2000, Numerische Mathematik.

[32]  B. Engquist,et al.  Sweeping preconditioner for the Helmholtz equation: Hierarchical matrix representation , 2010, 1007.4290.

[33]  Nathan Halko,et al.  Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions , 2009, SIAM Rev..

[34]  Robert A. van de Geijn,et al.  Programming matrix algorithms-by-blocks for thread-level parallelism , 2009, TOMS.

[35]  Julien Langou,et al.  A Class of Parallel Tiled Linear Algebra Algorithms for Multicore Architectures , 2007, Parallel Comput..

[36]  Patrick R. Amestoy,et al.  Fast 3D frequency-domain full-waveform inversion with a parallel block low-rank multifrontal direct solver: Application to OBC data from the North Sea , 2016 .

[37]  K. Marfurt Accuracy of finite-difference and finite-element modeling of the scalar and elastic wave equations , 1984 .

[38]  H. Maurer,et al.  Advances in three-dimensional geoelectric forward solver techniques , 2009 .

[39]  John K. Reid,et al.  The Multifrontal Solution of Indefinite Sparse Symmetric Linear , 1983, TOMS.

[40]  Patrick R. Amestoy,et al.  3D frequency-domain seismic modeling with a Parallel BLR multifrontal direct solver , 2015 .

[41]  Patrick R. Amestoy,et al.  Robust Memory-Aware Mappings for Parallel Multifrontal Factorizations , 2012, SIAM J. Sci. Comput..

[42]  Robert E. Tarjan,et al.  Algorithmic Aspects of Vertex Elimination on Graphs , 1976, SIAM J. Comput..

[43]  R. Pratt,et al.  INVERSE THEORY APPLIED TO MULTI‐SOURCE CROSS‐HOLE TOMOGRAPHY.: PART 1: ACOUSTIC WAVE‐EQUATION METHOD1 , 1990 .

[44]  Clément Weisbecker,et al.  Improving multifrontal solvers by means of algebraic Block Low-Rank representations. (Amélioration des solveurs multifrontaux à l'aide de représentations algébriques rang-faible par blocs) , 2013 .

[45]  Per-Gunnar Martinsson,et al.  Compressing Rank-Structured Matrices via Randomized Sampling , 2015, SIAM J. Sci. Comput..

[46]  R. Pratt Seismic waveform inversion in the frequency domain; Part 1, Theory and verification in a physical scale model , 1999 .

[47]  A. Abubakar,et al.  A General Framework for Constraint Minimization for the Inversion of Electromagnetic Measurements , 2004 .

[48]  David E. Keyes,et al.  Tile Low Rank Cholesky Factorization for Climate/Weather Modeling Applications on Manycore Architectures , 2017, ISC.

[49]  G. Miller On the Solution of a System of Linear Equations , 1910 .

[50]  Per-Gunnar Martinsson,et al.  On the Compression of Low Rank Matrices , 2005, SIAM J. Sci. Comput..

[51]  Cornelis Vuik,et al.  A new iterative solver for the time-harmonic wave equation , 2006 .

[52]  René-Édouard Plessix,et al.  A Helmholtz iterative solver for 3D seismic-imaging problems , 2007 .

[53]  Gregory A. Newman,et al.  3D finite-difference modeling of elastic wave propagation in the Laplace-Fourier domain , 2012 .

[54]  Alfredo Buttari,et al.  On the Complexity of the Block Low-Rank Multifrontal Factorization , 2017, SIAM J. Sci. Comput..

[55]  James Demmel,et al.  Making Sparse Gaussian Elimination Scalable by Static Pivoting , 1998, Proceedings of the IEEE/ACM SC98 Conference.

[56]  Robert Schreiber,et al.  A New Implementation of Sparse Gaussian Elimination , 1982, TOMS.

[57]  Changsoo Shin,et al.  Improved frequency-domain elastic wave modeling using weighted-averaging difference operators , 2000 .

[58]  S. Constable Ten years of marine CSEM for hydrocarbon exploration , 2010 .

[59]  I. Duff,et al.  Direct Methods for Sparse Matrices , 1987 .

[60]  M. Yannakakis Computing the Minimum Fill-in is NP^Complete , 1981 .

[61]  D. Vígh,et al.  Comparisons For Waveform Inversion, Time Domain Or Frequency Domain? , 2008 .

[62]  Daniil V. Shantsev,et al.  Fully anisotropic 3-D EM modelling on a Lebedev grid with a multigrid pre-conditioner , 2016 .

[63]  Shivkumar Chandrasekaran,et al.  A Fast ULV Decomposition Solver for Hierarchically Semiseparable Representations , 2006, SIAM J. Matrix Anal. Appl..

[64]  Timothy A. Davis,et al.  An Unsymmetric-pattern Multifrontal Method for Sparse Lu Factorization , 1993 .

[65]  James Demmel,et al.  A Supernodal Approach to Sparse Partial Pivoting , 1999, SIAM J. Matrix Anal. Appl..

[66]  Kerry Key,et al.  Marine Electromagnetic Studies of Seafloor Resources and Tectonics , 2011, Surveys in Geophysics.

[67]  Patrick Amestoy,et al.  Hybrid scheduling for the parallel solution of linear systems , 2006, Parallel Comput..

[68]  Marwan Charara,et al.  The domain of applicability of acoustic full-waveform inversion for marine seismic data , 2009 .

[69]  Ludovic Métivier,et al.  Computationally efficient three-dimensional acoustic finite-difference frequency-domain seismic modeling in vertical transversely isotropic media with sparse direct solver , 2014 .

[70]  Samuel Williams,et al.  An Efficient Multicore Implementation of a Novel HSS-Structured Multifrontal Solver Using Randomized Sampling , 2015, SIAM J. Sci. Comput..

[71]  J. O. Aasen On the reduction of a symmetric matrix to tridiagonal form , 1971 .

[72]  Gregory A. Newman,et al.  Three-dimensional inverse modelling of damped elastic wave propagation in the Fourier domain , 2014 .

[73]  C. Shin,et al.  Improved amplitude preservation for prestack depth migration by inverse scattering theory , 2001 .

[74]  Jean-Yves L'Excellent,et al.  Improving Multifrontal Methods by Means of Block Low-Rank Representations , 2015, SIAM J. Sci. Comput..

[75]  A. Tarantola Inversion of seismic reflection data in the acoustic approximation , 1984 .

[76]  Per-Gunnar Martinsson,et al.  A direct solver with O(N) complexity for integral equations on one-dimensional domains , 2011, 1105.5372.

[77]  Samuel Williams,et al.  Roofline: an insightful visual performance model for multicore architectures , 2009, CACM.

[78]  Patrick R. Amestoy,et al.  On Exploiting Sparsity of Multiple Right-Hand Sides in Sparse Direct Solvers , 2019, SIAM J. Sci. Comput..

[79]  HackbuschW. A sparse matrix arithmetic based on H-matrices. Part I , 1999 .

[80]  Jack J. Dongarra,et al.  A set of level 3 basic linear algebra subprograms , 1990, TOMS.

[81]  James Hardy Wilkinson,et al.  Error Analysis of Direct Methods of Matrix Inversion , 1961, JACM.

[82]  Ronald Kriemann,et al.  Hierarchical Matrices Based on a Weak Admissibility Criterion , 2004, Computing.

[83]  J. T. Smith Conservative modeling of 3-D electromagnetic fields, Part II: Biconjugate gradient solution and an accelerator , 1996 .

[84]  Dmitry B. Avdeev,et al.  Three-Dimensional Electromagnetic Modelling and Inversion from Theory to Application , 2005 .

[85]  Per-Gunnar Martinsson,et al.  Randomized algorithms for the low-rank approximation of matrices , 2007, Proceedings of the National Academy of Sciences.

[86]  Jianlin Xia,et al.  Efficient Structured Multifrontal Factorization for General Large Sparse Matrices , 2013, SIAM J. Sci. Comput..

[87]  Pieter Ghysels,et al.  A Distributed-Memory Package for Dense Hierarchically Semi-Separable Matrix Computations Using Randomization , 2015, ACM Trans. Math. Softw..

[88]  James Demmel,et al.  SuperLU_DIST: A scalable distributed-memory sparse direct solver for unsymmetric linear systems , 2003, TOMS.

[89]  Ludovic Métivier,et al.  Efficient 3-D frequency-domain mono-parameter full-waveform inversion of ocean-bottom cable data: application to Valhall in the visco-acoustic vertical transverse isotropic approximation , 2015 .

[90]  J. Bérenger Three-Dimensional Perfectly Matched Layer for the Absorption of Electromagnetic Waves , 1996 .

[91]  Anshul Gupta,et al.  Recent advances in direct methods for solving unsymmetric sparse systems of linear equations , 2002, TOMS.

[92]  Ludovic Métivier,et al.  The SEISCOPE optimization toolbox: A large-scale nonlinear optimization library based on reverse communication , 2016 .

[93]  Shivkumar Chandrasekaran,et al.  On the Numerical Rank of the Off-Diagonal Blocks of Schur Complements of Discretized Elliptic PDEs , 2010, SIAM J. Matrix Anal. Appl..

[94]  John Beidler,et al.  Data Structures and Algorithms , 1996, Wiley Encyclopedia of Computer Science and Engineering.

[95]  G. Golub,et al.  Linear least squares solutions by householder transformations , 1965 .

[96]  W. A. Mulder,et al.  A multigrid solver for 3D electromagnetic diffusion , 2006 .

[97]  Joseph W. H. Liu,et al.  The Theory of Elimination Trees for Sparse Unsymmetric Matrices , 2005, SIAM J. Matrix Anal. Appl..

[98]  Wolfgang Hackbusch,et al.  Construction and Arithmetics of H-Matrices , 2003, Computing.

[99]  Olav I. Barkved,et al.  Business Impact of Full Waveform Inversion At Valhall , 2010 .

[100]  Svein Ellingsrud,et al.  The Meter Reader—Remote sensing of hydrocarbon layers by seabed logging (SBL): Results from a cruise offshore Angola , 2002 .

[101]  Jianlin Xia,et al.  Fast algorithms for hierarchically semiseparable matrices , 2010, Numer. Linear Algebra Appl..

[102]  Eric Darve,et al.  Sparse Supernodal Solver Using Block Low-Rank Compression , 2017, 2017 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW).

[103]  Adrianna Gillman,et al.  Fast Direct Solvers for Elliptic Partial Differential Equations , 2011 .

[104]  John K. Reid,et al.  Exploiting zeros on the diagonal in the direct solution of indefinite sparse symmetric linear systems , 1996, TOMS.

[105]  Jianlin Xia,et al.  Massively parallel structured multifrontal solver for time-harmonic elastic waves in 3-D anisotropic media , 2012 .

[106]  J. L. Rigal,et al.  On the Compatibility of a Given Solution With the Data of a Linear System , 1967, JACM.

[107]  Olav I. Barkved,et al.  Thematic Set: Full waveform inversion: the next leap forward in imaging at Valhall , 2010 .

[108]  Robert D. Skeel,et al.  Scaling for Numerical Stability in Gaussian Elimination , 1979, JACM.

[109]  Jean-Yves L'Excellent,et al.  Reducing the I/O Volume in Sparse Out-of-core Multifrontal Methods , 2009, SIAM J. Sci. Comput..

[110]  R. Plessix Three-dimensional frequency-domain full-waveform inversion with an iterative solver , 2009 .

[111]  J. Bunch,et al.  Some stable methods for calculating inertia and solving symmetric linear systems , 1977 .

[112]  Wolfgang Hackbusch,et al.  A Sparse Matrix Arithmetic Based on H-Matrices. Part I: Introduction to H-Matrices , 1999, Computing.

[113]  D. Ruiz A Scaling Algorithm to Equilibrate Both Rows and Columns Norms in Matrices 1 , 2001 .

[114]  G. W. Hohmann,et al.  A finite-difference, time-domain solution for three-dimensional electromagnetic modeling , 1993 .

[115]  Jack Dongarra,et al.  LINPACK Users' Guide , 1987 .

[116]  A. George Nested Dissection of a Regular Finite Element Mesh , 1973 .

[117]  Xiaoye S. Li,et al.  Frequency response modelling of seismic waves using finite difference time domain with phase sensitive detection (TD–PSD) , 2007 .

[118]  C. Eckart,et al.  The approximation of one matrix by another of lower rank , 1936 .

[119]  Azzam Haidar,et al.  Three‐dimensional parallel frequency‐domain visco‐acoustic wave modelling based on a hybrid direct/iterative solver , 2011 .

[120]  Mario Bebendorf,et al.  Hierarchical Matrices: A Means to Efficiently Solve Elliptic Boundary Value Problems , 2008 .

[121]  S. Eisenstat,et al.  Node Selection Strategies for Bottom-Up Sparse Matrix Ordering , 1998, SIAM J. Matrix Anal. Appl..

[122]  Joseph W. H. Liu,et al.  Elimination Structures for Unsymmetric Sparse $LU$ Factors , 1993, SIAM J. Matrix Anal. Appl..

[123]  François-Henry Rouet,et al.  Parallel Computation of Entries of A-1 , 2015, SIAM J. Sci. Comput..

[124]  Per-Gunnar Martinsson,et al.  A Fast Randomized Algorithm for Computing a Hierarchically Semiseparable Representation of a Matrix , 2011, SIAM J. Matrix Anal. Appl..

[125]  Jennifer A. Scott,et al.  Compressed Threshold Pivoting for Sparse Symmetric Indefinite Systems , 2013, SIAM J. Matrix Anal. Appl..

[126]  W. Prager,et al.  Compatibility of approximate solution of linear equations with given error bounds for coefficients and right-hand sides , 1964 .

[127]  Ralph-Uwe Börner,et al.  Numerical Modelling in Geo-Electromagnetics: Advances and Challenges , 2010 .

[128]  Pieter Ghysels,et al.  A Robust Parallel Preconditioner for Indefinite Systems Using Hierarchical Matrices and Randomized Sampling , 2017, 2017 IEEE International Parallel and Distributed Processing Symposium (IPDPS).

[129]  S. Sherwin,et al.  Finite Difference, Finite Element and Finite Volume Methods for Partial Differential Equations , 2005 .

[130]  Alexander Heinecke,et al.  LIBXSMM: Accelerating Small Matrix Multiplications by Runtime Code Generation , 2016, SC16: International Conference for High Performance Computing, Networking, Storage and Analysis.

[131]  Romain Brossier,et al.  On the footprint of anisotropy on isotropic full waveform inversion: the Valhall case study , 2011 .

[132]  David Goudin,et al.  Controlling the Memory Subscription of Distributed Applications with a Task-Based Runtime System , 2016, 2016 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW).

[133]  Daniil V. Shantsev,et al.  Fast multimodel finite-difference controlled-source electromagnetic simulations based on a Schur complement approach , 2014 .

[134]  Rita Streich,et al.  Comparison of iterative and direct solvers for 3D CSEM modeling , 2012 .

[135]  Alfred V. Aho,et al.  The Transitive Reduction of a Directed Graph , 1972, SIAM J. Comput..

[136]  Guillaume Houzeaux,et al.  A parallel finite-element method for three-dimensional controlled-source electromagnetic forward modelling , 2013 .

[137]  Alex Pothen,et al.  A Mapping Algorithm for Parallel Sparse Cholesky Factorization , 1993, SIAM J. Sci. Comput..

[138]  Timothy A. Davis,et al.  The university of Florida sparse matrix collection , 2011, TOMS.

[139]  François-Henry Rouet,et al.  Memory and performance issues in parallel multifrontal factorizations and triangular solutions with sparse right-hand sides. (Problèmes de mémoire et de performance de la factorisation multifrontale parallèle et de la résolution triangulaire à seconds membres creux) , 2012 .

[140]  Jianlin Xia,et al.  On 3D modeling of seismic wave propagation via a structured parallel multifrontal direct Helmholtz solver , 2011 .

[141]  G. Newman,et al.  Frequency‐domain modelling of airborne electromagnetic responses using staggered finite differences , 1995 .

[142]  Xiaoye S. Li,et al.  Massively parallel structured direct solver for equations describing time-harmonic qP-polarized waves in TTI media , 2012 .

[143]  Astrid Kornberg Bjørke,et al.  3D Inversion of Marine CSEM Data Using a Fast Finite-difference Time-domain Forward Code And Approximate Hessian-based Optimization , 2008 .

[144]  G GrimesRoger,et al.  Accurate Symmetric Indefinite Linear Equation Solvers , 1999 .

[145]  S. Operto,et al.  Mixed‐grid and staggered‐grid finite‐difference methods for frequency‐domain acoustic wave modelling , 2004 .

[146]  Y. Erlangga,et al.  ON A MULTILEVEL KRYLOV METHOD FOR THE HELMHOLTZ EQUATION PRECONDITIONED BY SHIFTED LAPLACIAN , 2008 .

[147]  Nuno V. da Silva,et al.  A finite element multifrontal method for 3D CSEM modeling in the frequency domain , 2012 .

[148]  Joseph W. H. Liu,et al.  Modification of the minimum-degree algorithm by multiple elimination , 1985, TOMS.

[149]  Mario Bebendorf,et al.  Why Finite Element Discretizations Can Be Factored by Triangular Hierarchical Matrices , 2007, SIAM J. Numer. Anal..

[150]  W. Hackbusch,et al.  Introduction to Hierarchical Matrices with Applications , 2003 .

[151]  Iain S. Duff,et al.  Strategies for Scaling and Pivoting for Sparse Symmetric Indefinite Problems , 2005, SIAM J. Matrix Anal. Appl..

[152]  Moritz Diehl,et al.  BLASFEO: Basic linear algebra subroutines for embedded optimization , 2017, ACM Trans. Math. Softw..

[153]  Douglas W. Oldenburg,et al.  Three dimensional inversion of multisource time domain electromagnetic data , 2013 .

[154]  Bora Uçar,et al.  A Symmetry Preserving Algorithm for Matrix Scaling , 2014, SIAM J. Matrix Anal. Appl..

[155]  R. Gerhard Pratt,et al.  Efficient waveform inversion and imaging: A strategy for selecting temporal frequencies , 2004 .

[156]  Patrick R. Amestoy,et al.  An Approximate Minimum Degree Ordering Algorithm , 1996, SIAM J. Matrix Anal. Appl..

[157]  Jianlin Xia,et al.  Randomized Sparse Direct Solvers , 2013, SIAM J. Matrix Anal. Appl..

[158]  J. Krebs,et al.  Fast full-wavefield seismic inversion using encoded sources , 2009 .

[159]  Jean Virieux,et al.  Frequency-Domain Numerical Modelling of Visco-Acoustic Waves Based on Finite-Difference and Finite-Element Discontinuous Galerkin Methods , 2010 .

[160]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[161]  Joseph W. H. Liu,et al.  The Multifrontal Method for Sparse Matrix Solution: Theory and Practice , 1992, SIAM Rev..

[162]  Manuel Amaya High-order optimization methods for large-scale 3D CSEM data inversion , 2015 .

[163]  Jack Dongarra,et al.  Numerical Linear Algebra for High-Performance Computers , 1998 .

[164]  René-Édouard Plessix,et al.  Modified surface boundary conditions for elastic waveform inversion of low-frequency wide-angle active land seismic data , 2015 .

[165]  K. Yee Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .

[166]  Ludovic Métivier,et al.  2D and 3D frequency-domain elastic wave modeling in complex media with a parallel iterative solver , 2015 .

[167]  Patrick R. Amestoy,et al.  Performance and Scalability of the Block Low-Rank Multifrontal Factorization on Multicore Architectures , 2019, ACM Trans. Math. Softw..

[168]  Sofia Davydycheva 3D modeling of new-generation (1999–2010) resistivity logging tools , 2010 .