Prediction of Axial Asymmetry in Jovian Magnetopause Reconnection

We show the possible existence of a significant axial asymmetry in the reconnection separator at the Jovian magnetopause using first‐principle, physics‐based global simulations. Under eastward interplanetary magnetic field (IMF) conditions near Jupiter's orbit, reconnection occurs at the southern‐dusk and northern magnetopause with large shear angles between the magnetospheric and magnetosheath magnetic fields. When driven by the westward IMF, the reconnection position switches to the northern‐dusk and southern magnetopause. Component reconnection at the southern‐dusk/northern‐dusk magnetopause is associated with the interaction of the IMF with the nearly‐dipolar background fields. Nearly‐antiparallel reconnection near the noon‐midnight plane at the northern/southern magnetopause is related to the dawn‐dusk asymmetric, helical, closed lobe magnetic fields, which is a consequence of significant planetary corotation effects and not expected at Earth. Such configuration is testable as Juno has proceeded its orbit to the high‐altitude cusps and provides new insight into the interpretation of measurements from other rotationally‐driven systems.

[1]  G. DiBraccio,et al.  Investigating the Occurrence of Magnetic Reconnection at Jupiter's Dawn Magnetopause During the Juno Era , 2022, Geophysical Research Letters.

[2]  J. Lyon,et al.  How Jupiter’s unusual magnetospheric topology structures its aurora , 2020, Science Advances.

[3]  B. Bonfond,et al.  Six Pieces of Evidence Against the Corotation Enforcement Theory to Explain the Main Aurora at Jupiter , 2020, Journal of Geophysical Research: Space Physics.

[4]  Eugene N. Parker,et al.  Cosmical Magnetic Fields: Their Origin and their Activity , 2019 .

[5]  Michael Wiltberger,et al.  GAMERA: A Three-dimensional Finite-volume MHD Solver for Non-orthogonal Curvilinear Geometries , 2018, The Astrophysical Journal Supplement Series.

[6]  B. M. Dinelli,et al.  Concurrent ultraviolet and infrared observations of the north Jovian aurora during Juno's first perijove , 2018, Icarus.

[7]  J. Gérard,et al.  Jupiter's Aurora Observed With HST During Juno Orbits 3 to 7 , 2018 .

[8]  Peter A. Delamere,et al.  Asymmetric Kelvin‐Helmholtz Instability at Jupiter's Magnetopause Boundary: Implications for Corotation‐Dominated Systems , 2018 .

[9]  Adrian P. Martin,et al.  The Ultraviolet Spectrograph on NASA’s Juno Mission , 2017 .

[10]  T. Guillot,et al.  The Juno Mission , 2017, Space Science Reviews.

[11]  A. Runov,et al.  Dawn-Dusk Asymmetries in Planetary Plasma Environments , 2017 .

[12]  P. Cassak,et al.  Transition from global to local control of dayside reconnection from ionospheric‐sourced mass loading , 2017 .

[13]  J. Gérard,et al.  Jupiter’s magnetosphere and aurorae observed by the Juno spacecraft during its first polar orbits , 2017, Science.

[14]  P. Cassak,et al.  Separator reconnection at the magnetopause for predominantly northward and southward IMF: Techniques and results , 2016 .

[15]  J. Gérard,et al.  The far-ultraviolet main auroral emission at Jupiter - Part 1: Dawn-dusk brightness asymmetries , 2015 .

[16]  T. Moore,et al.  Magnetic reconnection , 2015, Nature Physics.

[17]  J. Lyon,et al.  A study of asymmetric reconnection scaling in the Lyon‐Fedder‐Mobarry code , 2014 .

[18]  J. Lyon,et al.  Properties of outflow‐driven sawtooth substorms , 2012 .

[19]  Hilary V. Cane,et al.  Near-earth solar wind flows and related geomagnetic activity during more than four solar cycles (1963-2011) , 2012 .

[20]  S. Petrinec,et al.  Antiparallel and component reconnection at the dayside magnetopause , 2011 .

[21]  J. Lyon,et al.  Magnetic reconnection at the dayside magnetopause in global Lyon-Fedder-Mobarry simulations , 2010 .

[22]  F. Bagenal,et al.  Solar wind interaction with Jupiter's magnetosphere , 2009 .

[23]  D. Mccomas,et al.  Reply to comment by S. W. H. Cowley et al. on “Jupiter: A fundamentally different magnetospheric interaction with the solar wind” , 2008 .

[24]  S. Imber,et al.  Comment on “Jupiter: A fundamentally different magnetospheric interaction with the solar wind” by D. J. McComas and F. Bagenal , 2008 .

[25]  D. Mccomas,et al.  Jupiter: A fundamentally different magnetospheric interaction with the solar wind , 2007 .

[26]  K. Khurana,et al.  Global structure of Jupiter's magnetospheric current sheet , 2005 .

[27]  C. Jackman,et al.  Implications of rapid planetary rotation for the Dungey magnetotail of Saturn , 2005 .

[28]  John Lyon,et al.  The Lyon-Fedder-Mobarry (LFM) global MHD magnetospheric simulation code , 2004 .

[29]  S. Petrinec,et al.  Location of the reconnection line for northward interplanetary magnetic field , 2004 .

[30]  S. Fuselier,et al.  Continuous magnetic reconnection at Earth's magnetopause , 2003, Nature.

[31]  S. Petrinec,et al.  On continuous versus discontinuous neutral lines at the dayside magnetopause for southward interplanetary magnetic field , 2003 .

[32]  Emma J. Bunce,et al.  Jupiter's polar ionospheric flows: Theoretical interpretation , 2003 .

[33]  Christopher T. Russell,et al.  Probabilistic models of the Jovian magnetopause and bow shock locations , 2002 .

[34]  Joachim Birn,et al.  Magnetic Reconnection in Plasmas , 2002 .

[35]  B. Mauk,et al.  Transient aurora on Jupiter from injections of magnetospheric electrons , 2002, Nature.

[36]  J. H. Waite,et al.  An auroral flare at Jupiter , 2001, Nature.

[37]  Deborah A. Miller,et al.  Galileo orbiter ultraviolet observations of Jupiter aurora , 1998 .

[38]  Robert L. Lysak,et al.  Introduction to Space Physics , 1995 .

[39]  R. Elsner,et al.  ROSAT observations of the Jupiter aurora , 1994 .

[40]  C. Russell,et al.  Plasma flow reversals at the dayside magnetopause and the origin of asymmetric polar cap convection , 1990 .

[41]  Angioletta Coradini,et al.  The Juno Mission , 1989, Proceedings of the International Astronomical Union.

[42]  Wolfgang Baumjohann,et al.  The magnetopause for large magnetic shear: AMPTE/IRM observations , 1986 .

[43]  J. Waite,et al.  Magnetospheric energization by interaction between planetary spin and the solar wind , 1984 .

[44]  Travis W. Hill,et al.  Inertial limit on corotation , 1979 .

[45]  W. Axford The interaction between the solar wind and the Earth's magnetosphere , 1962 .

[46]  M. Kivelson,et al.  The Magnetodiscs and Aurorae of Giant Planets , 2016 .

[47]  Klaus Aachen Introduction To Space Physics , 2016 .

[48]  R. Kallenbach,et al.  Solar System Magnetospheres , 2005 .

[49]  M. Kivelson,et al.  The Configuration of Jupiter ’ s Magnetosphere , 2003 .

[50]  Eric Ronald Priest,et al.  Magnetic Reconnection: MHD Theory and Applications , 2000 .

[51]  G. Guo,et al.  Reply to the comment , 1997, quant-ph/9710014.

[52]  V. Vasyliūnas Planetary magnetospheres , 1993 .