How to Convert SPME to P3M: Influence Functions and Error Estimates.

We demonstrate explicitly how the two seemingly different particle mesh Ewald methods, the smooth particle mesh Ewald (SPME) and the particle-particle particle mesh (P3M), can be mathematically transformed into each other. This allows us in particular to convert the error estimate of the P3M method in the energy-conserving scheme (also known as "P3M with analytic differentiation") into an error estimate for the SPME method, via a simple change of the lattice Green function. Our error estimate is valid for any values of the SPME parameters (mesh size, spline interpolation order, Ewald splitting parameter, real-space cutoff distance), including odd orders of splines. The problem with the self-forces is avoided thanks to an analytical formula that allows to subtract them directly within the particle mesh calculation. Plots of the accuracy of the SPME forces are provided for a wide range of parameter values. The main use of the error estimate is to allow a simulation program to scan quickly the multidimensional parameter space to find the best set of parameters to achieve a target accuracy at the smallest computational cost. As a byproduct, we show how a SPME code can be transformed into a P3M version by changing a few lines of code. We demonstrate also that the P3M lattice Green function can be approximated by a closed form expression, computable on-the-fly, that provides essentially the same accuracy as the full function.

[1]  Axel Arnold,et al.  Efficient methods to compute long-range interactions for soft matter systems , 2005 .

[2]  Lee G. Pedersen,et al.  Long-range electrostatic effects in biomolecular simulations , 1997 .

[3]  J. Perram,et al.  Simulation of electrostatic systems in periodic boundary conditions. I. Lattice sums and dielectric constants , 1980, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[4]  Christian Holm,et al.  Optimizing working parameters of the smooth particle mesh Ewald algorithm in terms of accuracy and efficiency. , 2010, The Journal of chemical physics.

[5]  Terry P Lybrand,et al.  Staggered Mesh Ewald: An extension of the Smooth Particle-Mesh Ewald method adding great versatility. , 2009, Journal of chemical theory and computation.

[6]  C. Holm,et al.  P3M algorithm for dipolar interactions. , 2008, The Journal of chemical physics.

[7]  Holger Gohlke,et al.  The Amber biomolecular simulation programs , 2005, J. Comput. Chem..

[8]  Christian Holm,et al.  Removal of spurious self-interactions in particle-mesh methods , 2011, Comput. Phys. Commun..

[9]  Berk Hess,et al.  GROMACS 3.0: a package for molecular simulation and trajectory analysis , 2001 .

[10]  Philippe H. Hünenberger,et al.  Optimal charge-shaping functions for the particle–particle—particle–mesh (P3M) method for computing electrostatic interactions in molecular simulations , 2000 .

[11]  H. Stern,et al.  On mesh-based Ewald methods: optimal parameters for two differentiation schemes. , 2008, The Journal of chemical physics.

[12]  J. Perram,et al.  Cutoff Errors in the Ewald Summation Formulae for Point Charge Systems , 1992 .

[13]  Christian Holm,et al.  Interlaced P3M algorithm with analytical and ik-differentiation. , 2010, The Journal of chemical physics.

[14]  D. Frenkel,et al.  Calculation of the melting point of NaCl by molecular simulation , 2003 .

[15]  J. W. Eastwood Optimal particle-mesh algorithms , 1975 .

[16]  H. G. Petersen,et al.  An algorithm for the simulation of condensed matter which grows as the 3/2 power of the number of particles , 1988 .

[17]  O. Lenz,et al.  The optimal P3M algorithm for computing electrostatic energies in periodic systems. , 2007, The Journal of chemical physics.

[18]  Edmund Bertschinger,et al.  Particle-Mesh Methods On The Connection Machine , 1994 .

[19]  A. Bruce Langdon,et al.  “Energy-conserving” plasma simulation algorithms , 1973 .

[20]  T. Darden,et al.  Molecular dynamics simulations of biomolecules: long-range electrostatic effects. , 1999, Annual review of biophysics and biomolecular structure.

[21]  T. Straatsma,et al.  THE MISSING TERM IN EFFECTIVE PAIR POTENTIALS , 1987 .

[22]  Jim Glosli,et al.  Comments on P3M, FMM, and the Ewald method for large periodic Coulombic systems , 1996 .

[23]  Christian Holm,et al.  How to mesh up Ewald sums. I. A theoretical and numerical comparison of various particle mesh routines , 1998 .

[24]  Wilfred F. van Gunsteren,et al.  Lattice‐sum methods for calculating electrostatic interactions in molecular simulations , 1995 .

[25]  Laxmikant V. Kalé,et al.  Scalable molecular dynamics with NAMD , 2005, J. Comput. Chem..

[26]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[27]  H. Lewis,et al.  Energy-conserving numerical approximations for Vlasov plasmas , 1970 .

[28]  T. Darden,et al.  A smooth particle mesh Ewald method , 1995 .

[29]  P. P. Ewald Die Berechnung optischer und elektrostatischer Gitterpotentiale , 1921 .

[30]  Hans-Jörg Limbach,et al.  ESPResSo - an extensible simulation package for research on soft matter systems , 2006, Comput. Phys. Commun..