A Multimodal Approach to Incremental User Profile Building

The World Wide Web is the largest distributed information source which is accessed by billions of people all across the world. A unique content so urce on the web can be accessed byvarious users for different purposes. Hence it becomes mandatory tocapture specific information requirements of each user. This paper proposes a multimodal approach to build profile of users in a n incremental manner. The approach proposed in this paper achieves the goal of building user profiles using a hybrid approach. The profile building process is further enriched with the incorporation of web page segmentation technique involving page trees and densitometry. The proposed model extracts the requirement context of the user by utilizing both local and global sources during the profile building process.The experiments conducted on the proposed model confirm the effectiveness of the approach and highlights the channels wh ich carries an edge over others in capturing the user interest.

[1]  Mohand Boughanem,et al.  Inferring the user interests using the search history , 2006, LWA.

[2]  Wei-Ying Ma,et al.  Block-based web search , 2004, SIGIR '04.

[3]  Susan T. Dumais,et al.  Evaluating implicit measures to improve the search experiences , 2003 .

[4]  John Yen,et al.  Learning user interest dynamics with a three-descriptor representation , 2001, J. Assoc. Inf. Sci. Technol..

[5]  Yannis Avrithis,et al.  Personalized information retrieval in context , 2006 .

[6]  Víctor Pàmies,et al.  Open Directory Project , 2003 .

[7]  Jonathan L. Herlocker,et al.  Click data as implicit relevance feedback in web search , 2007, Inf. Process. Manag..

[8]  John R. Paul,et al.  A Multiple Model Approach to Personalised Information Access , 2003 .

[9]  Justin Zobel,et al.  Effective ranking with arbitrary passages , 2001, J. Assoc. Inf. Sci. Technol..

[10]  G. Aghila,et al.  Museum: Multidimensional web page segment evaluation model , 2012, ArXiv.

[11]  Philip K. Chan,et al.  Learning implicit user interest hierarchy for context in personalization , 2008, IUI '03.

[12]  J. J. Rocchio,et al.  Relevance feedback in information retrieval , 1971 .

[13]  Wei-Ying Ma,et al.  VIPS: a Vision-based Page Segmentation Algorithm , 2003 .

[14]  Gerard Salton,et al.  The SMART Retrieval System—Experiments in Automatic Document Processing , 1971 .

[15]  Deepayan Chakrabarti,et al.  A graph-theoretic approach to webpage segmentation , 2008, WWW.

[16]  Barry Smyth,et al.  Anonymous personalization in collaborative web search , 2006, Information Retrieval.

[17]  Wolfgang Nejdl,et al.  A densitometric approach to web page segmentation , 2008, CIKM '08.

[18]  Jiuxin Cao,et al.  A segmentation method for web page analysis using shrinking and dividing , 2010, Int. J. Parallel Emergent Distributed Syst..

[19]  Clement T. Yu,et al.  Personalized Web search for improving retrieval effectiveness , 2004, IEEE Transactions on Knowledge and Data Engineering.