Locally constrained synthetic LoDs generation for natural terrain meshes
暂无分享,去创建一个
Inmaculada Coma | Pedro Morillo | Marcos Fernández | Manuel Pérez | P. Morillo | Marcos Fernández | Manolo Pérez | I. Coma
[1] Benoit B. Mandelbrot,et al. Fractal Geometry of Nature , 1984 .
[2] F. Kenton Musgrave,et al. The synthesis and rendering of eroded fractal terrains , 1989, SIGGRAPH.
[3] G. Wornell. Wavelet-based representations for the 1/f family of fractal processes , 1993, Proc. IEEE.
[4] B. Mandelbrot. Intermittent turbulence in self-similar cascades: divergence of high moments and dimension of the carrier , 1974, Journal of Fluid Mechanics.
[5] Heinz-Otto Peitgen,et al. The science of fractal images , 2011 .
[6] I. Daubechies. Orthonormal bases of compactly supported wavelets , 1988 .
[7] Patrick Flandrin,et al. Wavelet analysis and synthesis of fractional Brownian motion , 1992, IEEE Trans. Inf. Theory.
[8] Ingrid Daubechies,et al. Ten Lectures on Wavelets , 1992 .
[9] B. Mandelbrot,et al. Fractional Brownian Motions, Fractional Noises and Applications , 1968 .
[10] Gregory W. Wornell,et al. Estimation of fractal signals from noisy measurements using wavelets , 1992, IEEE Trans. Signal Process..
[11] Miguel Lozano,et al. Adding Synthetic Detail to Natural Terrain Using a Wavelet Approach , 2002, International Conference on Computational Science.
[12] Benoit B. Mandelbrot,et al. Fractals and Scaling in Finance , 1997 .
[13] U. Frisch. FULLY DEVELOPED TURBULENCE AND INTERMITTENCY , 1980 .
[14] Stéphane Mallat,et al. A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..
[15] Carl J. G. Evertsz,et al. Multifractality of the harmonic measure on fractal aggregates, and extended self-similarity , 1991 .