SPITZER INFRARED SPECTROGRAPH DETECTION OF MOLECULAR HYDROGEN ROTATIONAL EMISSION TOWARDS TRANSLUCENT CLOUDS

Using the Infrared Spectrograph on board the Spitzer Space Telescope, we have detected emission in the S(0), S(1), and S(2) pure-rotational (v = 0–0) transitions of molecular hydrogen (H2) toward six positions in two translucent high Galactic latitude clouds, DCld 300.2−16.9 and LDN 1780. The detection of these lines raises important questions regarding the physical conditions inside low-extinction clouds that are far from ultraviolet radiation sources. The ratio between the S(2) flux and the flux from polycyclic aromatic hydrocarbons (PAHs) at 7.9 μm averages 0.007 for these six positions. This is a factor of about four higher than the same ratio measured toward the central regions of non-active Galaxies in the Spitzer Infrared Nearby Galaxies Survey. Thus, the environment of these translucent clouds is more efficient at producing rotationally excited H2 per PAH-exciting photon than the disks of entire galaxies. Excitation analysis finds that the S(1) and S(2) emitting regions are warm (T ≳ 300 K), but comprise no more than 2% of the gas mass. We find that UV photons cannot be the sole source of excitation in these regions and suggest mechanical heating via shocks or turbulent dissipation as the dominant cause of the emission. The clouds are located on the outskirts of the Scorpius-Centaurus OB association and may be dissipating recent bursts of mechanical energy input from supernova explosions. We suggest that pockets of warm gas in diffuse or translucent clouds, integrated over the disks of galaxies, may represent a major source of all non-active galaxy H2 emission.

[1]  T. Tripp,et al.  THE DISTRIBUTION OF THERMAL PRESSURES IN THE DIFFUSE, COLD NEUTRAL MEDIUM OF OUR GALAXY. II. AN EXPANDED SURVEY OF INTERSTELLAR C i FINE-STRUCTURE EXCITATIONS , 2011, 1104.2323.

[2]  B. Draine Physics of the Interstellar and Intergalactic Medium , 2011 .

[3]  K. Menten,et al.  Submillimeter absorption from SH+, a new widespread interstellar radical, 13CH+ and HCl , 2010, 1009.2825.

[4]  B. Gold,et al.  ON THE ORIGINS OF THE HIGH-LATITUDE Hα BACKGROUND , 2010, 1010.4361.

[5]  P. Hennebelle,et al.  CH+(1-0) and 13CH+(1-0) absorption lines in the direction of massive star-forming regions , 2010 .

[6]  O. Paris,et al.  THE ENERGETICS OF MOLECULAR GAS IN NGC 891 FROM H2 AND FAR-INFRARED SPECTROSCOPY , 2010, 1007.4701.

[7]  P. Appleton,et al.  WARM MOLECULAR HYDROGEN EMISSION IN NORMAL EDGE-ON GALAXIES NGC 4565 AND NGC 5907 , 2010, 1007.4194.

[8]  T. Murphy,et al.  GASS: The Parkes Galactic All-Sky Survey. II. Stray-Radiation Correction and Second Data Release , 2010, 1007.0686.

[9]  C. Kramer,et al.  Strong CH+ J = 1–0 emission and absorption in DR21 , 2010, 1007.1420.

[10]  J. Pety,et al.  The CO luminosity and CO-H2 conversion factor of diffuse ISM: does CO emission trace dense molecular gas? , 2010, 1005.2157.

[11]  Di Li,et al.  MOLECULAR HYDROGEN EMISSION FROM THE BOUNDARIES OF THE TAURUS MOLECULAR CLOUD , 2010 .

[12]  Observational properties of rotationally excited molecular hydrogen in translucent lines of sight , 2010, 1001.3815.

[13]  R. Lallement,et al.  New 3D gas density maps of NaI and CaII interstellar absorption within 300 pc , 2009, 0912.3040.

[14]  G. Rieke,et al.  A WARM MOLECULAR HYDROGEN TAIL DUE TO RAM-PRESSURE STRIPPING OF A CLUSTER GALAXY , 2009, 0912.0075.

[15]  E. Falgarone,et al.  Models of turbulent dissipation regions in the diffuse interstellar medium , 2009, 0901.3712.

[16]  J. L. Bourlot,et al.  Modeling of diffuse molecular gas applied to HD 102065 observations , 2008, 0802.4003.

[17]  Multi-wavelength observations of a nearby multi-phase interstellar cloud , 2008, 0802.4059.

[18]  G. Ferland,et al.  The origin of molecular hydrogen emission in cooling‐flow filaments★ , 2008, 0802.2535.

[19]  Paule Sonnentrucker,et al.  MOLECULAR HYDROGEN IN THE FAR ULTRAVIOLET SPECTROSCOPIC EXPLORER TRANSLUCENT LINES OF SIGHT: THE FULL SAMPLE , 2008 .

[20]  Az,et al.  Warm Molecular Hydrogen in the Spitzer SINGS Galaxy Sample , 2007, 0707.0395.

[21]  D. Calzetti,et al.  Dust Masses, PAH Abundances, and Starlight Intensities in the SINGS Galaxy Sample , 2007, astro-ph/0703213.

[22]  Jr.,et al.  The Mid-Infrared Spectrum of Star-forming Galaxies: Global Properties of Polycyclic Aromatic Hydrocarbon Emission , 2006, astro-ph/0610913.

[23]  B. Draine,et al.  Infrared Emission from Interstellar Dust. IV. The Silicate-Graphite-PAH Model in the Post-Spitzer Era , 2006, astro-ph/0608003.

[24]  K. Mattila,et al.  Galactic Dust Clouds Are Shining in Scattered Hα Light , 2007 .

[25]  C. D. Burgo,et al.  Properties of dust and detection of Hα emission in LDN 1780 , 2006, astro-ph/0603002.

[26]  B. Wakker,et al.  A FUSE Survey of High-Latitude Galactic Molecular Hydrogen , 2005, astro-ph/0512444.

[27]  C. Danforth,et al.  A FUSE Survey of Interstellar Molecular Hydrogen toward High-Latitude AGNs , 2005, astro-ph/0507581.

[28]  L. Verstraete,et al.  Warm gas in the cold diffuse interstellar medium: Spectral signatures in the H 2 pure rotational lines , 2005 .

[29]  G. Lagache,et al.  IRIS: A New Generation of IRAS Maps , 2004, astro-ph/0412216.

[30]  E. Wright,et al.  The Spitzer Space Telescope Mission , 2004, astro-ph/0406223.

[31]  F. Crifo,et al.  3D mapping of the dense interstellar gas around the Local Bubble , 2003 .

[32]  A. Tielens,et al.  Neutral Atomic Phases of the Interstellar Medium in the Galaxy , 2003 .

[33]  M. Juvela,et al.  Photoelectric Heating and [C II] Cooling in Translucent Clouds: Results for Cloud Models Based on Simulations of Compressible Magnetohydrodynamic Turbulence , 2003, astro-ph/0302365.

[34]  C. Heiles,et al.  THE MILLENNIUM ARECIBO 21-CM ABSORPTION LINE SURVEY . II . PROPERTIES OF THE WARM AND COLD NEUTRAL MEDIA , 2002 .

[35]  J. Tennyson Molecules in space , 2003 .

[36]  Paule Sonnentrucker,et al.  A Far Ultraviolet Spectroscopic Explorer Survey of Interstellar Molecular Hydrogen in Translucent Clouds , 2002 .

[37]  W. Reach,et al.  Photoelectric Heating and [C II] Cooling of High Galactic Latitude Translucent Clouds , 2002, astro-ph/0207264.

[38]  R. Gredel,et al.  Interstellar CN toward CH + -forming regions , 2002 .

[39]  É. Habart,et al.  H2 formation and excitation in the diffuse interstellar medium , 2002, astro-ph/0205503.

[40]  Y. Fukui,et al.  A Large Scale 12CO (J=1−0) Survey toward the Chamaeleon Region with NANTEN , 2001 .

[41]  F. Bertoldi,et al.  The Rich Ultraviolet Spectrum of Vibrationally Excited Interstellar H2 toward HD 37903 , 2001 .

[42]  Jr.,et al.  SINGS: The SIRTF Nearby Galaxies Survey , 2001, astro-ph/0305437.

[43]  E. Dishoeck,et al.  Astrochemistry: From Molecular Clouds to Planetary Systems , 2000 .

[44]  G. P. Forêts,et al.  C‐type shocks in the interstellar medium: profiles of CH+ and CH absorption lines , 1998 .

[45]  F. Bertoldi,et al.  Structure of Stationary Photodissociation Fronts , 1996, astro-ph/9603032.

[46]  G. Helou Moderate Density Regions in the Lynds 134 Cloud Complex , 1995 .

[47]  A. Tielens,et al.  Low-Density Photodissociation Regions , 1991 .

[48]  G. J. Babu,et al.  Linear regression in astronomy. II , 1990 .

[49]  R. Wilson,et al.  Molecules in Galaxies. VI. Diffuse and Dense Cloud Contributions to the Large-Scale CO Emission of the Galaxy , 1988 .

[50]  J. Black,et al.  Fluorescent excitation of interstellar H2 , 1987 .

[51]  N. Katz,et al.  Magnetohydrodynamic shocks in diffuse clouds. II. Production of CH(+), OH, CH, and other species , 1986 .

[52]  T. Hartquist,et al.  Theoretical studies of interstellar molecular shocks – II. Molecular hydrogen cooling and rotational level populations , 1986 .

[53]  B. Draine Magneto-Hydrodynamic Shock Waves in Molecular Clouds , 1983 .

[54]  B. Savage,et al.  A survey of interstellar H I from L-alpha absorption measurements. II , 1978 .

[55]  D. Hollenbach,et al.  H2 cooling, dissociation, and infrared emission in shocked molecular clouds , 1978 .