Derivation and visualization of molecular properties

This chapter reviews the derivation and visualization of molecular properties other than conformations. It also concentrates on electronic properties. It is indeed true that in most computer-aided molecular design (CAMD) applications, it is necessary to go beyond the structural model by clothing it using selected electronic properties that help in rationalizing or predicting the chemical behavior of the compound. To this end, various “property builders,” as compared with the well known structural model builders, based mostly on the quantum chemical methods are reviewed. The chapter emphasizes the local properties that can be advantageously represented as a complement of molecular models. Historically, molecular orbitals (MOs) were the first electronic property to be visualized on simple graphics hardware such as printers, plotters, etc. before being advantageously represented on the screen of PCs and workstations. The chapter presents and discusses properties amenable to graphical representations only, excluding all the global properties such as spectroscopic ones that in any case are of little use in CAMD.

[1]  E. Stevens,et al.  Accurate X-Ray Diffraction and Quantum Chemistry: The Study of Charge Density Distributions , 1977 .

[2]  Ralph G. Pearson,et al.  HARD AND SOFT ACIDS AND BASES , 1963 .

[3]  Alan F. Williams,et al.  Electronic structure and spectroscopic properties of chromium(V), molybdenum(VI) and niobium(V) tetraperoxides , 1984 .

[4]  Jacques Weber,et al.  Electronic structure of metallocene compounds. 3. Comparison of the results of multiple-scattering X.alpha. calculations with various electronic observables of cobaltocene , 1982 .

[5]  Jacopo Tomasi,et al.  Molecular SCF Calculations for the Ground State of Some Three‐Membered Ring Molecules: (CH2)3, (CH2)2NH, (CH2)2NH2+, (CH2)2O, (CH2)2S, (CH)2CH2, and N2CH2 , 1970 .

[6]  R. Bader Atoms in molecules : a quantum theory , 1990 .

[7]  R. Bader,et al.  Molecular Charge Distributions and Chemical Binding. II. First‐Row Diatomic Hydrides, AH , 1967 .

[8]  R. Goddard,et al.  High‐Resolution X‐ray Crystallography—An Experimental Method for the Description of Chemical Bonds , 1985 .

[9]  P. Geerlings,et al.  Quantum-chemical study of the Fukui function as a reactivity index , 1991 .

[10]  G. Klopman,et al.  Reaction potential map analysis of chemical reactivity—III , 1984 .

[11]  M. Karplus,et al.  Analysis of Charge Distributions: Hydrogen Fluoride , 1964 .

[12]  J. Weber,et al.  Development and applications of an extended-Hückel-based reactivity index for organometallic complexes , 1992 .

[13]  George D. Purvis,et al.  On the use of isovalued surfaces to determine molecule shape and reaction pathways , 1991, J. Comput. Aided Mol. Des..

[14]  Methods for determining the reliability of semiempirical electrostatic potentials and potential derived charges , 1992 .

[15]  C. Culberson,et al.  On the graphical display of molecular electrostatic force-fields and gradients of the electron density , 1986 .

[16]  J. Weber,et al.  Calculation and visualization of a reactivity index for organometallics based on the extended Hückel model , 1991 .

[17]  Robert F. Hout,et al.  A pictorial approach to molecular structure and reactivity , 1984 .

[18]  F. L. Pilar,et al.  Elementary Quantum Chemistry , 1968 .

[19]  R. S. Mulliken,et al.  Diatomic Molecules: Results of ab Initio Calculations , 1977 .

[20]  L. C. Snyder,et al.  Molecular wave functions and properties: tabulated from SCF calculations in a Gaussian basis set , 1972 .

[21]  C. Elschenbroich Organometallics: A Concise Introduction , 1989 .

[22]  P. Sautet,et al.  Theoretical analysis of the addition of nucleophiles to (.eta.4-diene)MLn complexes , 1987 .

[23]  G. Bernardinelli,et al.  Experimental and Theoretical Investigation of Asymmetric Induction in the Synthesis of Disubstituted Cyclohexadienes via Chiral Benzene Chromium Complexes , 1992, CHIMIA.

[24]  Weitao Yang,et al.  Local softness and chemical reactivity in the molecules CO, SCN− and H2CO , 1988 .

[25]  J. Murray,et al.  Electrostatic potentials on the molecular surfaces of cyclic ureides , 1991 .

[26]  M. Yáñez,et al.  The .alpha. vs. .beta. protonation of pyrrole and indole , 1984 .

[27]  Roald Hoffmann,et al.  Conservation of orbital symmetry , 1968 .

[28]  Harel Weinstein,et al.  A misconception concerning the electronic density distribution of an atom , 1975 .

[29]  Ian Fleming,et al.  Frontier Orbitals and Organic Chemical Reactions , 1977 .

[30]  R. Parr Density-functional theory of atoms and molecules , 1989 .

[31]  P. Löwdin Quantum Theory of Many-Particle Systems. I. Physical Interpretations by Means of Density Matrices, Natural Spin-Orbitals, and Convergence Problems in the Method of Configurational Interaction , 1955 .

[32]  A. Katritzky,et al.  The principles of heterocyclic chemistry , 1967 .

[33]  Kenichi Fukui,et al.  Molecular Orbital Theory of Orientation in Aromatic, Heteroaromatic, and Other Conjugated Molecules , 1954 .

[34]  Norman L. Allinger,et al.  Conformational analysis—CI , 1974 .

[35]  Peter Quarendon,et al.  Display of quantum mechanical properties on van der Waals surfaces , 1984 .

[36]  H. Weinstein,et al.  A finite expansion method for the calculation and interpretation of molecular electrostatic potentials , 1986 .

[37]  F. Albert Cotton,et al.  Advanced Inorganic Chemistry: A Comprehensive Text , 1972 .

[38]  J. Pople,et al.  Approximate Self-Consistent Molecular Orbital Theory. I. Invariant Procedures , 1965 .

[39]  Jacopo Tomasi,et al.  Group contributions to the electrostatic molecular potential , 1976 .

[40]  Jacques Weber,et al.  Computer graphics applications of electron deformation densities and electrostatic potentials in coordination chemistry , 1986 .

[41]  J. Tomasi,et al.  Ab initio molecular electrostatic potentials , 1975 .

[42]  Peter Politzer,et al.  Correlations between molecular electrostatic potentials and some experimentally-based indices of reactivity , 1992 .

[43]  R. Zahradník,et al.  Weak intermolecular interactions in chemistry and biology , 1980 .

[44]  A. Haaland Molecular structure and bonding in the 3d metallocenes , 1979 .

[45]  R. S. Mulliken Electronic Population Analysis on LCAO–MO Molecular Wave Functions. I , 1955 .

[46]  L. Overman,et al.  Modeling chemical reactivity. 1. Regioselectivity of Diels-Alder cycloadditions of electron-rich dienes with electron-deficient dienophiles , 1986 .

[47]  J. P. Ritchie Some comments concerning the use of static charge distributions for predicting chemical reactivity , 1992 .

[48]  E. Haselbach,et al.  Computer‐Drawn Molecular Orbitals: An aid for the users of MO‐programs , 1971 .

[49]  Andrew Streitwieser,et al.  Orbital and electron density diagrams : an application of computer graphics , 1973 .

[50]  O. Eisenstein,et al.  Molecular graphics investigation of the addition of nucleophiles to (η4:butadiene) M(CO)3 complexes (M=Fe,Co+) , 1992 .

[51]  Jacques Weber,et al.  Molecular graphics modeling of organometallic reactivity , 1989, Comput. Graph..

[52]  David A. Brown,et al.  The prediction of nucleophilic attacking sites via determinants of ‘active’ frontier and near-frontier orbitals , 1985 .

[53]  P. Jungwirth,et al.  Modelization of the protonation of ferrocene using an effective potential parametrized from local-spin density and Hartree—Fock calculations , 1992 .

[54]  A. Solladié-Cavallo,et al.  Arene-chromium tricarbonyl complexes: bonding and behaviour , 1985 .

[55]  William L. Jorgensen,et al.  The Organic Chemist's Book of Orbitals , 1973 .

[56]  J. H. Richards,et al.  PROTONATION OF METALLOCENES BY STRONG ACIDS. STRUCTURE OF THE CATION , 1960 .

[57]  Kenichi Fukui,et al.  Theory of Substitution in Conjugated Molecules , 1954 .

[58]  M. Meot-ner Ion chemistry of ferrocene. Thermochemistry of ionization and protonation and solvent clustering. Slow and entropy-driven proton-transfer kinetics , 1989 .

[59]  Harold Hart,et al.  Organic chemistry: A short course , 1972 .

[60]  A. Goursot,et al.  The modeling of nucleophilic and electrophilic additions and substitutions using extended Hückel‐based reaction potentials , 1990 .

[61]  P. Kollman,et al.  An approach to computing electrostatic charges for molecules , 1984 .

[62]  D. Salahub,et al.  New algorithm for the optimization of geometries in local density functional theory , 1990 .

[63]  Sarah L. Price,et al.  On the representation of electrostatic fields around ab initio charge distributions , 1991, J. Comput. Aided Mol. Des..

[64]  D. Pérahia,et al.  Use of the overlap multipole expansion for approximating molecular electrostatic potentials , 1979 .

[65]  J. Clardy,et al.  .eta.5-Cyclohexadienyltricarbonylchromium(0) complexes from addition of carbon nucleophiles to .eta.6-benzenetricarbonylchromium(0). Formation, chemical and spectroscopic features, and x-ray diffraction analysis , 1979 .

[66]  R. Hoffmann,et al.  Transition-metal complexed olefins: how their reactivity toward a nucleophile relates to their electronic structure , 1981 .

[67]  Jeremy G. Vinter,et al.  Electrostatics and computational modelling Editorial overview , 1991, J. Comput. Aided Mol. Des..