Fuzzy computing for data mining

The study is devoted to linguistic data mining, an endeavor that exploits the concepts, constructs, and mechanisms of fuzzy set theory. The roles of information granules, information granulation, and the techniques therein are discussed in detail. Particular attention is given to the manner in which these information granules are represented as fuzzy sets and manipulated according to the main mechanisms of fuzzy sets. We introduce unsupervised learning (clustering) where optimization is supported by the linguistic granules of context, thereby giving rise to so-called context-sensitive fuzzy clustering. The combination of neuro, evolutionary, and granular computing in the context of data mining is explored. Detailed numerical experiments using well-known datasets are also included and analyzed.

[1]  Moustafa Ghanem,et al.  Large Scale Data Mining: Challenges and Responses , 1997, KDD.

[2]  Brian Everitt,et al.  Cluster analysis , 1974 .

[3]  Rajesh N. Davé,et al.  Characterization and detection of noise in clustering , 1991, Pattern Recognit. Lett..

[4]  Peter J. H. King,et al.  Syntax and Semantics of Gql, a graphical query language , 1995, J. Vis. Lang. Comput..

[5]  Witold Pedrycz,et al.  Conditional Fuzzy C-Means , 1996, Pattern Recognit. Lett..

[6]  Padhraic Smyth,et al.  From Data Mining to Knowledge Discovery in Databases , 1996, AI Mag..

[7]  W. Pedrycz,et al.  An introduction to fuzzy sets : analysis and design , 1998 .

[8]  Hannu Toivonen,et al.  Sampling Large Databases for Association Rules , 1996, VLDB.

[9]  Gregory Piatetsky-Shapiro,et al.  Knowledge Discovery in Databases: An Overview , 1992, AI Mag..

[10]  Steven F. Roth,et al.  An Interactive Visualization Environment for Data Exploration , 1997, KDD.

[11]  Yang Wang,et al.  Representing Discovered Patterns Using Attributed Hypergraph , 1996, KDD.

[12]  Leo Breiman,et al.  Classification and Regression Trees , 1984 .

[13]  George J. Klir,et al.  Fuzzy sets, uncertainty and information , 1988 .

[14]  Yuval Shahar,et al.  A Framework for Knowledge-Based Temporal Abstraction , 1997, Artif. Intell..

[15]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[16]  Yasuhiko Morimoto,et al.  Computing Optimized Rectilinear Regions for Association Rules , 1997, KDD.

[17]  Abraham Silberschatz,et al.  On Subjective Measures of Interestingness in Knowledge Discovery , 1995, KDD.

[18]  Peter J. Rousseeuw,et al.  Finding Groups in Data: An Introduction to Cluster Analysis , 1990 .

[19]  Lotfi A. Zadeh,et al.  Fuzzy sets and information granularity , 1996 .

[20]  G. Matheron Random Sets and Integral Geometry , 1976 .

[21]  Ron Kohavi,et al.  MineSet: An Integrated System for Data Mining , 1997, KDD.

[22]  G. A. Miller THE PSYCHOLOGICAL REVIEW THE MAGICAL NUMBER SEVEN, PLUS OR MINUS TWO: SOME LIMITS ON OUR CAPACITY FOR PROCESSING INFORMATION 1 , 1956 .

[23]  Witold Pedrycz,et al.  Fuzzy set framework for development of a perception perspective , 1990 .

[24]  R. Yager MEASURING TRANQUILITY AND ANXIETY IN DECISION MAKING: AN APPLICATION OF FUZZY SETS , 1982 .

[25]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[26]  Witold Pedrycz,et al.  Selected issues of frame of knowledge representation realized by means of linguistic labels , 1992, Int. J. Intell. Syst..

[27]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[28]  James M. Keller,et al.  A possibilistic approach to clustering , 1993, IEEE Trans. Fuzzy Syst..

[29]  Michael R. Anderberg,et al.  Cluster Analysis for Applications , 1973 .

[30]  Jerzy W. Grzymala-Busse,et al.  Rough Sets , 1995, Commun. ACM.

[31]  A. Kandel Fuzzy Mathematical Techniques With Applications , 1986 .

[32]  Jan M. Zytkow,et al.  Automated Discovery of Empirical Laws , 1996, Fundam. Informaticae.

[33]  Lotfi A. Zadeh,et al.  The Concepts of a Linguistic Variable and its Application to Approximate Reasoning , 1975 .

[34]  Michio Sugeno,et al.  Industrial Applications of Fuzzy Technology in the World , 1995 .

[35]  Salvatore J. Stolfo,et al.  JAM: Java Agents for Meta-Learning over Distributed Databases , 1997, KDD.

[36]  Ning Zhong,et al.  Toward a Multi-Strategy and Cooperative Discovery System , 1995, KDD.

[37]  Kaoru Hirota,et al.  Industrial Applications of Fuzzy Technology , 1993, Springer Japan.

[38]  E. Backer,et al.  Computer-assisted reasoning in cluster analysis , 1995 .

[39]  John A. Hartigan,et al.  Clustering Algorithms , 1975 .

[40]  Ramakrishnan Srikant,et al.  Mining Association Rules with Item Constraints , 1997, KDD.

[41]  Alexander Schnabl,et al.  Development of Multi-Criteria Metrics for Evaluation of Data Mining Algorithms , 1997, KDD.

[42]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .

[43]  Witold Pedrycz,et al.  Conditional fuzzy clustering in the design of radial basis function neural networks , 1998, IEEE Trans. Neural Networks.

[44]  J. Ross Quinlan,et al.  Simplifying Decision Trees , 1987, Int. J. Man Mach. Stud..

[45]  Gregory Piatetsky-Shapiro,et al.  The KDD process for extracting useful knowledge from volumes of data , 1996, CACM.

[46]  Ramasamy Uthurusamy,et al.  Data mining and knowledge discovery in databases , 1996, CACM.