TreeJuxtaposer: scalable tree comparison using Focus+Context with guaranteed visibility

Structural comparison of large trees is a difficult task that is only partially supported by current visualization techniques, which are mainly designed for browsing. We present TreeJuxtaposer, a system designed to support the comparison task for large trees of several hundred thousand nodes. We introduce the idea of "guaranteed visibility", where highlighted areas are treated as landmarks that must remain visually apparent at all times. We propose a new methodology for detailed structural comparison between two trees and provide a new nearly-linear algorithm for computing the best corresponding node from one tree to another. In addition, we present a new rectilinear Focus+Context technique for navigation that is well suited to the dynamic linking of side-by-side views while guaranteeing landmark visibility and constant frame rates. These three contributions result in a system delivering a fluid exploration experience that scales both in the size of the dataset and the number of pixels in the display. We have based the design decisions for our system on the needs of a target audience of biologists who must understand the structural details of many phylogenetic, or evolutionary, trees. Our tool is also useful in many other application domains where tree comparison is needed, ranging from network management to call graph optimization to genealogy.

[1]  Li Zhang On matching nodes between trees , 2003 .

[2]  F. James Rohlf,et al.  Taxonomic Congruence in the Leptopodomorpha Re-examined , 1981 .

[3]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[4]  Lyn Bartram,et al.  The continuous zoom: a constrained fisheye technique for viewing and navigating large information spaces , 1995, UIST '95.

[5]  Steven P. Reiss,et al.  Stretching the rubber sheet: a metaphor for viewing large layouts on small screens , 1993, UIST '93.

[6]  E. N. Adams Consensus Techniques and the Comparison of Taxonomic Trees , 1972 .

[7]  David Peleg,et al.  Compact and localized distributed data structures , 2003, Distributed Computing.

[8]  Terry Winograd,et al.  Fluid interaction with high-resolution wall-size displays , 2001, UIST '01.

[9]  George W. Furnas,et al.  Critical zones in desert fog: aids to multiscale navigation , 1998, UIST '98.

[10]  Jock D. Mackinlay,et al.  Visualizing the evolution of Web ecologies , 1998, CHI.

[11]  Ivan Herman,et al.  Graph Visualization and Navigation in Information Visualization: A Survey , 2000, IEEE Trans. Vis. Comput. Graph..

[12]  Eric Neufeld,et al.  Visual Metaphors fro Understanding Logic Program Execution , 1997, Graphics Interface.

[13]  George W. Furnas,et al.  Effective view navigation , 1997, CHI.

[14]  Dipl.-Ing,et al.  Real-time Rendering , 2022 .

[15]  Nina Amenta,et al.  Case study: visualizing sets of evolutionary trees , 2002, IEEE Symposium on Information Visualization, 2002. INFOVIS 2002..

[16]  D. Robinson,et al.  Comparison of phylogenetic trees , 1981 .

[17]  Richard A. Becker,et al.  Brushing scatterplots , 1987 .

[18]  Jeffrey Heer,et al.  DOITrees revisited: scalable, space-constrained visualization of hierarchical data , 2004, AVI.

[19]  Geoffrey Zweig,et al.  Syntactic Clustering of the Web , 1997, Comput. Networks.

[20]  Kevin Lynch,et al.  The Image of the City , 1960 .

[21]  Pat Hanrahan,et al.  Interactive visualization of large graphs and networks , 2000 .

[22]  Tomas Akenine-Möller,et al.  Real-time rendering , 1997 .

[23]  Martin Graham,et al.  Combining linking and focusing techniques for a multiple hierarchy visualisation , 2001, Proceedings Fifth International Conference on Information Visualisation.

[24]  Hector Garcia-Molina,et al.  SCAM: A Copy Detection Mechanism for Digital Documents , 1995, DL.

[25]  Andrei Z. Broder,et al.  On the resemblance and containment of documents , 1997, Proceedings. Compression and Complexity of SEQUENCES 1997 (Cat. No.97TB100171).

[26]  Tamara Munzner,et al.  Drawing Large Graphs with H3Viewer and Site Manager , 1998, GD.

[27]  Jock D. Mackinlay,et al.  The document lens , 1993, UIST '93.

[28]  Ed Huai-hsin Chi,et al.  Sensemaking of evolving Web sites using visualization spreadsheets , 1999, Proceedings 1999 IEEE Symposium on Information Visualization (InfoVis'99).

[29]  Ramana Rao,et al.  A focus+context technique based on hyperbolic geometry for visualizing large hierarchies , 1995, CHI '95.

[30]  Hector Garcia-Molina,et al.  Copy detection mechanisms for digital documents , 1995, SIGMOD '95.

[31]  Sean R. Eddy,et al.  ATV: display and manipulation of annotated phylogenetic , 2001, Bioinform..

[32]  Erich Bornberg-Bauer,et al.  TreeWiz: interactive exploration of huge trees , 2002, Bioinform..

[33]  Catherine Plaisant,et al.  SpaceTree: supporting exploration in large node link tree, design evolution and empirical evaluation , 2002, IEEE Symposium on Information Visualization, 2002. INFOVIS 2002..

[34]  Jay Torborg,et al.  Talisman: commodity realtime 3D graphics for the PC , 1996, SIGGRAPH.

[35]  Robert E. Tarjan,et al.  Fast Algorithms for Finding Nearest Common Ancestors , 1984, SIAM J. Comput..

[36]  Matthew O. Ward,et al.  High Dimensional Brushing for Interactive Exploration of Multivariate Data , 1995, Proceedings Visualization '95.

[37]  Stuart K. Card,et al.  Degree-of-interest trees: a component of an attention-reactive user interface , 2002, AVI '02.

[38]  Daniel Asimov,et al.  The grand tour: a tool for viewing multidimensional data , 1985 .

[39]  Jock D. Mackinlay,et al.  Cone Trees: animated 3D visualizations of hierarchical information , 1991, CHI.

[40]  Ben Shneiderman,et al.  Interactively Exploring Hierarchical Clustering Results , 2002, Computer.

[41]  David Swofford,et al.  PAUP* 4.0 : Phylogenetic Analysis Using Parsimony , 2002 .

[42]  W. H. Day Optimal algorithms for comparing trees with labeled leaves , 1985 .

[43]  D. Maddison,et al.  MacClade 4: analysis of phy-logeny and character evolution , 2003 .