Implicit–Explicit Schemes for BGK Kinetic Equations

In this work a new class of numerical methods for the BGK model of kinetic equations is presented. In principle, schemes of any order of accuracy in both space and time can be constructed with this technique. The methods proposed are based on an explicit–implicit time discretization. In particular the convective terms are treated explicitly, while the source terms are implicit. In this fashion even problems with infinite stiffness can be integrated with relatively large time steps. The conservation properties of the schemes are investigated. Numerical results are shown for schemes of order 1, 2 and 5 in space, and up to third-order accurate in time.

[1]  Roberto Monaco,et al.  BGK-type models in strong reaction and kinetic chemical equilibrium regimes , 2005 .

[2]  Gabriella Puppo,et al.  Staggered Finite Difference Schemes for Balance Laws , 2006 .

[3]  C. Chu Kinetic‐Theoretic Description of the Formation of a Shock Wave , 1965 .

[4]  Luc Mieussens,et al.  DISCRETE VELOCITY MODEL AND IMPLICIT SCHEME FOR THE BGK EQUATION OF RAREFIED GAS DYNAMICS , 2000 .

[5]  Kazuo Aoki,et al.  Numerical analysis of gas flows condensing on its plane condensed phase on the basis of kinetic theory , 1990 .

[6]  Lorenzo Pareschi,et al.  Numerical Solution of the Boltzmann Equation I: Spectrally Accurate Approximation of the Collision Operator , 2000, SIAM J. Numer. Anal..

[7]  B. Perthame,et al.  A Consistent BGK-Type Model for Gas Mixtures , 2002 .

[8]  Kun Xu,et al.  A gas-kinetic BGK scheme for the Navier-Stokes equations and its connection with artificial dissipation and Godunov method , 2001 .

[9]  J. Craggs Applied Mathematical Sciences , 1973 .

[10]  M. Carpenter,et al.  Additive Runge-Kutta Schemes for Convection-Diffusion-Reaction Equations , 2003 .

[11]  C. Cercignani Rarefied Gas Dynamics: From Basic Concepts to Actual Calculations , 2000 .

[12]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[13]  S. Osher,et al.  Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .

[14]  B. Perthame,et al.  Numerical passage from kinetic to fluid equations , 1991 .

[15]  Shaoqiang Tang,et al.  Explicit diffusive kinetic schemes for nonlinear degenerate parabolic systems , 2004, Math. Comput..

[16]  Lorenzo Pareschi,et al.  An introduction to Monte Carlo method for the Boltzmann equation , 2001 .

[17]  G. Russo,et al.  Implicit-explicit Runge-Kutta schemes for stiff systems of differential equations , 2000 .

[18]  Lorenzo Pareschi,et al.  Central Runge-Kutta Schemes for Conservation Laws , 2005, SIAM J. Sci. Comput..

[19]  Graeme A. Bird,et al.  Molecular Gas Dynamics , 1976 .

[20]  Chi-Wang Shu Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws , 1998 .

[21]  Steven J. Ruuth,et al.  Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations , 1997 .

[22]  Juan-Chen Huang,et al.  Rarefied Flow Computations Using Nonlinear Model Boltzmann Equations , 1995 .

[23]  Zhaoli Guo,et al.  Simple kinetic model for fluid flows in the nanometer scale. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  L. Mieussens Discrete-Velocity Models and Numerical Schemes for the Boltzmann-BGK Equation in Plane and Axisymmetric Geometries , 2000 .

[25]  Gabriella Puppo,et al.  Numerical Entropy Production for Central Schemes , 2003, SIAM J. Sci. Comput..

[26]  G. Russo,et al.  Implicit-explicit runge-kutta schemes and applications to hyperbolic systems with relaxation , 2005 .

[27]  Lowell H. Holway,et al.  Kinetic Theory of Shock Structure Using an Ellipsoidal Distribution Function , 1965 .

[28]  Benoît Perthame,et al.  Global existence to the BGK model of Boltzmann equation , 1989 .

[29]  Patrick Le Tallec,et al.  Numerical comparison between the Boltzmann and ES-BGK models for rarefied gases ☆ , 2002 .

[30]  Carlo Cercignani,et al.  Rarefied Gas Dynamics , 2000 .

[31]  S. Osher,et al.  Uniformly high order accuracy essentially non-oscillatory schemes III , 1987 .

[32]  Kazuo Aoki,et al.  Numerical Analysis of a Supersonic Rarefied Gas Flow past a Flat Plate at an Angle of Attack , 1996 .

[33]  P. Bhatnagar,et al.  A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems , 1954 .

[34]  Laure Saint-Raymond,et al.  From the BGK model to the Navier–Stokes equations , 2003 .

[35]  T. Teichmann,et al.  Introduction to physical gas dynamics , 1965 .

[36]  R. Illner,et al.  The mathematical theory of dilute gases , 1994 .

[37]  Irene M. Gamba,et al.  A WENO-solver for the transients of Boltzmann-Poisson system for semiconductor devices: performance and comparisons with Monte Carlo methods , 2003 .

[38]  G. Bird Molecular Gas Dynamics and the Direct Simulation of Gas Flows , 1994 .