Holographic method of cohering fiber tapped delay lines.

We propose, analyze, and demonstrate the use of a holographic method for cohering the output of a fiber tapped delay line (FTDL) that enables the use of fiber-remote optical modulators in coherent optical processing systems. We perform a theoretical examination of the phase-cohering process and show experimental results for a radio frequency (RF) spectrum analyzer that uses a lens to spatially Fourier transform the output of a holographically phase-cohered FTDL providing 50 MHz resolution and bandwidths approaching 3 GHz. Substantial improvements in bandwidth should be achievable with better fiber length-trimming accuracy and improvements in resolution can be obtained with longer fiber delay lines. We also analyze and demonstrate the use of a parallel holographic technique that compensates for polarization state scrambling induced by propagation through an array of single-mode fibers. Both the phase-cohering holography and the polarization fluctuation compensation can operate on hundreds of fibers in parallel, enabling both coherent optical signal processing with FTDLs and coherent fiber remoting of optically modulated RF signals from antenna arrays.

[1]  Leonid G. Kazovsky,et al.  Phase- and polarization-diversity coherent optical techniques , 1989 .

[2]  M. G. Parent,et al.  Fiber-optic remoting of an ultrahigh dynamic range radar , 1998 .

[3]  H. Fetterman,et al.  Demonstration of 110 GHz electro-optic polymer modulators , 1997 .

[5]  A.E. Willner,et al.  Monitoring and control of polarization-related impairments in optical fiber systems , 2004, Journal of Lightwave Technology.

[6]  D.E.N. Davies,et al.  Fibre-optic tapped delay line filter employing coherent optical processing , 1984 .

[7]  H. Miyazawa,et al.  Frequency-dependent propagation characteristics of coplanar waveguide electrode on 100GHz Ti:LiNbO/sub 3/ optical modulator , 1998 .

[8]  W.T. Rhodes,et al.  Acousto-optic signal processing: Convolution and correlation , 1981, Proceedings of the IEEE.

[9]  D. L. Hecht,et al.  Characteristics Of Acousto-Optic Devices For Signal Processors , 1982 .

[10]  M. H. Berry,et al.  Technique for stabilizing the phase of the reference signals in analog fiber-optic links. , 1995, Applied optics.

[11]  J. Goodman,et al.  Optical fiber delay line signal processing , 1984 .

[12]  Anjan Kumar Ghosh,et al.  Design of fiber optic adaline neural networks , 1997 .

[13]  Paulo E X Silveira,et al.  Optical finite impulse response neural networks. , 2002, Applied optics.

[14]  Arnaud Brignon,et al.  Experimental investigations of the photorefractive properties of rhodium-doped BaTiO3 at 1.06 μm , 1997 .

[15]  D Psaltis,et al.  Adaptive acoustooptic filter. , 1984, Applied optics.

[16]  J. Goodman,et al.  Fiber-optic lattice signal processing , 1984, Proceedings of the IEEE.

[17]  T.M. Turpin,et al.  Spectrum analysis using optical processing , 1981, Proceedings of the IEEE.

[18]  R. S. Withers,et al.  Superconductive tapped delay lines for microwave analog signal processing , 1983 .

[19]  Gregory Kriehn,et al.  Spatio-temporal operator formalism for holographic recording and diffraction in a photorefractive-based true-time-delay phased-array processor. , 2003, Applied optics.

[20]  K. Wilner,et al.  Fiber-optic delay lines for microwave signal processing , 1976, Proceedings of the IEEE.

[21]  Richard P. Kenan,et al.  Integrated optical architectures for tapped delay lines , 1990 .

[22]  H. J. Shaw,et al.  Coherent optical fibre delay-line processor , 1986 .

[23]  R. G. Priest,et al.  Optical fiber sensor technology , 1982, 1985 International Electron Devices Meeting.

[24]  K Wagner,et al.  Photorefractive processing for large adaptive phased arrays. , 1996, Applied optics.

[25]  R T Weverka,et al.  Wide angular aperture holograms in photorefractive crystals by the use of orthogonally polarized write and read beams. , 1996, Applied optics.

[26]  A P Goutzoulis,et al.  Hardware-compressive 2-D fiber optic delay line architecture for time steering of phased-array antennas. , 1990, Applied optics.

[27]  Optical BEAMTAP beam-forming and jammer-nulling system for broadband phased-array antennas. , 2000, Applied optics.

[28]  Joseph W. Goodman,et al.  Fan-in and Fan-out with Optical Interconnections , 1985 .

[29]  Paulo E X Silveira,et al.  Optoelectronic implementation of a 256-channel sonar adaptive-array processor. , 2004, Applied optics.

[30]  J. Mayhan,et al.  Wide-band adaptive antenna nulling using tapped delay lines , 1979 .