The End of Moore’s Law: Opportunities for Natural Computing?

The impending end of Moore’s Law has started a rethinking of the way computers are built and computation is done. This paper discusses two directions that are currently attracting much attention as future computation paradigms: the merging of logic and memory, and brain-inspired computing. Natural computing has been known for its innovative methods to conduct computation, and as such may play an important role in the shaping of the post-Moore era.

[1]  Nicolas Brunel,et al.  Single neuron dynamics and computation , 2014, Current Opinion in Neurobiology.

[2]  Tadao Murata,et al.  Petri nets: Properties, analysis and applications , 1989, Proc. IEEE.

[3]  Sergio Gomez Colmenarejo,et al.  Hybrid computing using a neural network with dynamic external memory , 2016, Nature.

[4]  R. Fields Change in the Brain's White Matter , 2010, Science.

[5]  Andrew S. Cassidy,et al.  A million spiking-neuron integrated circuit with a scalable communication network and interface , 2014, Science.

[6]  Razvan Pascanu,et al.  Overcoming catastrophic forgetting in neural networks , 2016, Proceedings of the National Academy of Sciences.

[7]  John W. Backus,et al.  Can programming be liberated from the von Neumann style?: a functional style and its algebra of programs , 1978, CACM.

[8]  Ferdinand Peper,et al.  Massively parallel computing on an organic molecular layer , 2010, ArXiv.

[9]  Rodrigo Alvarez-Icaza,et al.  Neurogrid: A Mixed-Analog-Digital Multichip System for Large-Scale Neural Simulations , 2014, Proceedings of the IEEE.

[10]  Robert M. Keller,et al.  Towards a Theory of Universal Speed-Independent Modules , 1974, IEEE Transactions on Computers.

[11]  Yasuo Takahashi,et al.  Brownian Circuits: Designs , 2016, Int. J. Unconv. Comput..

[12]  Leslie S Smith,et al.  Neuromorphic systems: past, present and future. , 2010, Advances in experimental medicine and biology.

[13]  Laszlo B. Kish,et al.  Noise-based logic hyperspace with the superposition of 2N states in a single wire , 2009, 0901.3947.

[14]  Alain Destexhe,et al.  Intracellular and computational evidence for a dominant role of internal network activity in cortical computations , 2011, Current Opinion in Neurobiology.

[15]  Eugene M. Izhikevich,et al.  Polychronization: Computation with Spikes , 2006, Neural Computation.

[16]  Pietro Perona,et al.  One-shot learning of object categories , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  Robert C. Minnick,et al.  A Survey of Microcellular Research , 1967, JACM.

[18]  D. Eigler,et al.  Molecule Cascades , 2002, Science.

[19]  Henry Markram,et al.  Real-Time Computing Without Stable States: A New Framework for Neural Computation Based on Perturbations , 2002, Neural Computation.

[20]  Tim Gollisch,et al.  Modeling Single-Neuron Dynamics and Computations: A Balance of Detail and Abstraction , 2006, Science.

[21]  D. Debanne,et al.  Axon physiology. , 2011, Physiological reviews.

[22]  D. Johnston,et al.  Regulation of Synaptic Efficacy by Coincidence of Postsynaptic APs and EPSPs , 1997 .

[23]  Daan Wierstra,et al.  One-shot Learning with Memory-Augmented Neural Networks , 2016, ArXiv.

[24]  Alex Graves,et al.  Neural Turing Machines , 2014, ArXiv.

[25]  R. Douglas Fields,et al.  A new mechanism of nervous system plasticity: activity-dependent myelination , 2015, Nature Reviews Neuroscience.

[26]  F. Mechler,et al.  Temporal coding of contrast in primary visual cortex: when, what, and why. , 2001, Journal of neurophysiology.

[27]  F. Peper,et al.  Laying out circuits on asynchronous cellular arrays: a step towards feasible nanocomputers? , 2003 .

[28]  G.E. Moore,et al.  Cramming More Components Onto Integrated Circuits , 1998, Proceedings of the IEEE.

[29]  Gabriel H. Loh Nuwan Jayasena Mark H. Oskin Mark Nutter Da Ignatowski A Processing-in-Memory Taxonomy and a Case for Studying Fixed-function PIM , 2013 .

[30]  Christopher W Mount,et al.  Neuronal Activity Promotes Oligodendrogenesis and Adaptive Myelination in the Mammalian Brain , 2014, Science.

[31]  Romain Brette,et al.  Philosophy of the Spike: Rate-Based vs. Spike-Based Theories of the Brain , 2015, Front. Syst. Neurosci..

[32]  P. Benioff The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines , 1980 .

[33]  Gordon E. Moore,et al.  Progress in digital integrated electronics , 1975 .

[34]  M. Biafore Cellular automata for nanometer-scale computation , 1994 .

[35]  Boleslaw K. Szymanski,et al.  Computing with Time: From Neural Networks to Sensor Networks , 2008, Comput. J..

[36]  Grzegorz Rozenberg,et al.  The many facets of natural computing , 2008, Commun. ACM.

[37]  Ferdinand Peper,et al.  Efficient Computation in Brownian Cellular Automata , 2009, IWNC.

[38]  A. Aertsen,et al.  Spike synchronization and rate modulation differentially involved in motor cortical function. , 1997, Science.

[39]  Master Gardener,et al.  Mathematical games: the fantastic combinations of john conway's new solitaire game "life , 1970 .

[40]  T. Isokawa,et al.  Fault-tolerance in nanocomputers: a cellular array approach , 2004, IEEE Transactions on Nanotechnology.

[41]  L. Durbeck,et al.  The Cell Matrix: an architecture for nanocomputing , 2001 .

[42]  B. McNaughton,et al.  Packet-based communication in the cortex , 2015, Nature Reviews Neuroscience.

[43]  Damien Querlioz,et al.  Spintronic Nanodevices for Bioinspired Computing , 2016, Proceedings of the IEEE.

[44]  Shinsuke Shimojo,et al.  Neural Computations Mediating One-Shot Learning in the Human Brain , 2013, PLoS biology.

[45]  John Wawrzynek,et al.  Silicon Auditory Processors as Computer Peripherals , 1992, NIPS.

[46]  Izhikevich Eugene,et al.  Spike-timing theory of working memory , 2010 .

[47]  Chris Mack,et al.  The Multiple Lives of Moore's Law , 2015, IEEE Spectrum.

[48]  Josep Carmona,et al.  Brownian Circuits: Fundamentals , 2013, JETC.

[49]  Ferdinand Peper,et al.  Simplifying Brownian Cellular Automata: Two States and an Average of Two Rules Per Cell , 2012, 2012 Third International Conference on Networking and Computing.

[50]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[51]  Steve B. Furber,et al.  The SpiNNaker Project , 2014, Proceedings of the IEEE.

[52]  K. Steinhubl Design of Ion-Implanted MOSFET'S with Very Small Physical Dimensions , 1974 .

[53]  J. J. Hopfield,et al.  Pattern recognition computation using action potential timing for stimulus representation , 1995, Nature.