Packing of convex polytopes into a parallelepiped

This article deals with the problem of packing convex polytopes into a parallelepiped of minimal height. It is assumed that the polytopes are oriented, i.e. rotations are not permitted. A mathematical model of the problem is developed and peculiarities of them are addressed. Based on these peculiarities an exact method to compute local optimal solutions is constructed. This method uses a special modification of the Simplex method. Some examples are also given.

[1]  G. Abdou,et al.  A SYSTEMATIC APPROACH FOR THE THREE-DIMENSIONAL PALLETIZATION PROBLEM , 1994 .

[2]  G. Scheithauer,et al.  Construction of a Φ-function for two convex polytopes , 2002 .

[3]  An Introduction to the Theory of Knots , 2002 .

[4]  Anup Kumar,et al.  Concept for a Genetic Algorithm for Packing Three Dimensional Objects of Com- plex Shape , 1996 .

[5]  David Pisinger,et al.  Heuristics for the container loading problem , 2002, Eur. J. Oper. Res..

[6]  Anup Kumar,et al.  A Genetic Algorithm for Packing Three-Dimensional Non-Convex Objects Having Cavities and Holes , 1997, ICGA.

[7]  Yu.G Stoyan,et al.  A mathematical model and a solution method for the problem of placing various-sized circles into a strip , 2004, Eur. J. Oper. Res..

[8]  Andreas Hartwig Algebraic 3-D Modeling , 1996 .

[9]  G. C. Shephard,et al.  Convex Polytopes , 1969, The Mathematical Gazette.

[10]  Yu. G. Stoyan,et al.  The Minimization Method for Some Permutation Functionals , 1979, Inf. Process. Lett..

[11]  Jonathan Cagan,et al.  A simulated annealing-based algorithm using hierarchical models for general three-dimensional component layout , 1998, Comput. Aided Des..

[12]  Lenwood S. Heath,et al.  Representing Polyhedra: Faces Are Better Than Vertices , 1993, Comput. Geom..

[13]  Hermann Gehring,et al.  A Genetic Algorithm for Solving the Container Loading Problem , 1997 .

[14]  Ernest Larry DeSha AREA-EFFICIENT AND VOLUME-EFFICIENT ALGORITHMS FOR LOADING CARGO , 1970 .

[15]  J. A. George,et al.  A heuristic for packing boxes into a container , 1980, Comput. Oper. Res..

[16]  Rimvydas Krasauskas Mathematical Methods in Geometric Design , 1997 .

[17]  G. Abdou,et al.  Interactive ILP procedures for stacking optimization for the 3D palletization problem , 1997 .

[18]  Jan Riehme,et al.  An efficient approach for the multi-pallet loading problem , 2000, Eur. J. Oper. Res..

[19]  W. Dowsland Three-dimensional packing—solution approaches and heuristic development , 1991 .

[20]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[21]  M.S.W. Ratcliff,et al.  Loading pallets with non-identical items , 1995 .

[22]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[23]  Daniel Mack,et al.  A parallel tabu search algorithm for solving the container loading problem , 2003, Parallel Comput..

[24]  Kenneth Steiglitz,et al.  Combinatorial Optimization: Algorithms and Complexity , 1981 .

[25]  José Fernando Oliveira,et al.  Cutting and Packing , 2007, Eur. J. Oper. Res..

[26]  Jonathan Cagan,et al.  A Simulated Annealing-Based Approach to Three-Dimensional Component Packing , 1995 .

[27]  M. Meyer,et al.  A computer-based heuristic for packing pooled shipment containers , 1990 .

[28]  G. Scheithauer,et al.  Packing of Various Radii Solid Spheres into a Parallelepiped , 2001 .

[29]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.