Broadband optical properties of large-area monolayer CVD molybdenum disulfide

Recently emerging large-area single-layer MoS2 grown by chemical vapor deposition has triggered great interest due to its exciting potential for applications in advanced electronic and optoelectronic devices. Unlike gapless graphene, MoS2 has an intrinsic band gap in the visible which crosses over from an indirect to a direct gap when reduced to a single atomic layer. In this paper, we report a comprehensive study of fundamental optical properties of MoS2 revealed by optical spectroscopy of Raman, photoluminescence, and vacuum ultraviolet spectroscopic ellipsometry. A band gap of 1.42 eV is determined by the absorption threshold of bulk MoS2 that shifts to 1.83 eV in monolayer MoS2. We extracted the high precision dielectric function up to 9.0 eV, which leads to the identification of many unique interband transitions at high symmetry points in the MoS2 momentum space. The positions of the so-called A and B excitons in single layers are found to shift upwards in energy compared with those of the bulk form and have smaller separation because of the decreased interactions between the layers. A very strong optical critical point predicted to correspond to a quasiparticle gap is observed at

[1]  Timothy C. Berkelbach,et al.  Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS(2). , 2014, Physical review letters.

[2]  G. Duesberg,et al.  Investigation of the optical properties of MoS2 thin films using spectroscopic ellipsometry , 2014 .

[3]  H. Takagi,et al.  Electronic structure of a quasi-freestanding MoS₂ monolayer. , 2014, Nano letters.

[4]  Jing Kong,et al.  Role of the seeding promoter in MoS2 growth by chemical vapor deposition. , 2014, Nano letters.

[5]  F. Xia,et al.  Electronic transport and device prospects of monolayer molybdenum disulphide grown by chemical vapour deposition , 2014, Nature Communications.

[6]  Lain‐Jong Li,et al.  Charge Dynamics and Electronic Structures of Monolayer MoS2 Films Grown by Chemical Vapor Deposition , 2013 .

[7]  S. Louie,et al.  Optical spectrum of MoS2: many-body effects and diversity of exciton states. , 2013, Physical review letters.

[8]  J. Grossman,et al.  Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged, and free excitons , 2013, Scientific Reports.

[9]  A. M. van der Zande,et al.  Direct measurement of the thickness-dependent electronic band structure of MoS2 using angle-resolved photoemission spectroscopy. , 2013, Physical review letters.

[10]  Pablo Jarillo-Herrero,et al.  Intrinsic electronic transport properties of high-quality monolayer and bilayer MoS2. , 2013, Nano letters.

[11]  P. Ajayan,et al.  Temperature-dependent phonon shifts in monolayer MoS2 , 2013, 1307.2447.

[12]  L. Wirtz,et al.  Effect of spin-orbit interaction on the excitonic effects in single-layer, double-layer, and bulk MoS2 , 2013, 1306.4257.

[13]  Yi Liu,et al.  Controlled Scalable Synthesis of Uniform, High-Quality Monolayer and Few-layer MoS2 Films , 2013, Scientific Reports.

[14]  M. Dresselhaus,et al.  Synthesis and transfer of single-layer transition metal disulfides on diverse surfaces. , 2013, Nano letters.

[15]  A. Dashora,et al.  Electronic and optical properties of MoS2 (0 0 0 1) thin films: Feasibility for solar cells , 2013 .

[16]  Yong-Wei Zhang,et al.  Quasiparticle band structures and optical properties of strained monolayer MoS 2 and WS 2 , 2012, 1211.5653.

[17]  P. Avouris,et al.  Electroluminescence in single layer MoS2. , 2012, Nano letters.

[18]  Jed I. Ziegler,et al.  Electrical control of optical properties of monolayer MoS2 , 2012, 1211.0341.

[19]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[20]  A. Ramasubramaniam Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides , 2012 .

[21]  J. Kong,et al.  Integrated circuits based on bilayer MoS₂ transistors. , 2012, Nano letters.

[22]  K. Tsukagoshi,et al.  Quantitative Raman spectrum and reliable thickness identification for atomic layers on insulating substrates. , 2012, ACS nano.

[23]  S. Min,et al.  MoS₂ nanosheet phototransistors with thickness-modulated optical energy gap. , 2012, Nano letters.

[24]  Keliang He,et al.  Control of valley polarization in monolayer MoS2 by optical helicity. , 2012, Nature nanotechnology.

[25]  Walter R. L. Lambrecht,et al.  Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS 2 , 2012 .

[26]  Dominique Baillargeat,et al.  From Bulk to Monolayer MoS2: Evolution of Raman Scattering , 2012 .

[27]  Lain‐Jong Li,et al.  Synthesis of Large‐Area MoS2 Atomic Layers with Chemical Vapor Deposition , 2012, Advanced materials.

[28]  Yu‐Chuan Lin,et al.  Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. , 2012, Nano letters.

[29]  Z. Yin,et al.  Single-layer MoS2 phototransistors. , 2012, ACS nano.

[30]  Soon Cheol Hong,et al.  Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H- M X 2 semiconductors ( M = Mo, W; X = S, Se, Te) , 2012 .

[31]  D. Weiss,et al.  Low‐temperature photoluminescence of oxide‐covered single‐layer MoS2 , 2011, 1112.3747.

[32]  Ho-Cheol Kim,et al.  Abundant non-toxic materials for thin film solar cells: Alternative to conventional materials , 2011 .

[33]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[34]  Alain C. Diebold,et al.  Optical properties of large-area polycrystalline chemical vapor deposited graphene by spectroscopic ellipsometry , 2010 .

[35]  van de Mcm Richard Sanden,et al.  Optical constants of graphene measured by spectroscopic ellipsometry , 2010 .

[36]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[37]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[38]  G. Rubio‐Bollinger,et al.  Optical identification of atomically thin dichalcogenide crystals , 2010, 1003.2602.

[39]  V. Kravets,et al.  Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption , 2010, Physical Review B.

[40]  Eugene A. Irene,et al.  Handbook of Ellipsometry , 2005 .

[41]  R. Péchou,et al.  Light emission from spectral analysis of Au/MoS2 nanocontacts stimulated by scanning tunneling microscopy , 2002 .

[42]  M. Fox Optical Properties of Solids , 2010 .

[43]  K. Kreher,et al.  Fundamentals of Semiconductors – Physics and Materials Properties , 1997 .

[44]  Cardona,et al.  Temperature dependence of the dielectric function and interband critical points in silicon. , 1987, Physical review. B, Condensed matter.

[45]  C. Roxlo,et al.  Bulk and surface optical absorption in molybdenum disulfide , 1987 .

[46]  Haas,et al.  Electronic structure of MoSe2, MoS2, and WSe2. II. The nature of the optical band gaps. , 1987, Physical review. B, Condensed matter.

[47]  D. Aspnes Approximate solution of ellipsometric equations for optically biaxial crystals. , 1980, Journal of the Optical Society of America.

[48]  F. Wooten,et al.  Optical Properties of Solids , 1973 .

[49]  Matthew J. Rosseinsky,et al.  Physical Review B , 2011 .

[50]  R. Azzam,et al.  Ellipsometry and polarized light , 1977 .

[51]  M. Cardona Modulation spectroscopy of semiconductors , 1970 .

[52]  T. Wieting,et al.  Excitons and Photoconductivity in Transition‐Metal Dichalcogenides , 1970 .

[53]  I. Miyazaki,et al.  AND T , 2022 .