Carbon nanotube photo- and electroluminescence in longitudinal electric fields.

The photoluminescence of a partially suspended, semiconducting carbon nanotube that forms the active channel of a field-effect transistor is quenched and red-shifted upon application of a longitudinal electrical (source-drain) field. The quenching can be explained by a loss of oscillator strength and an increased Auger-like nonradiative decay of the E(11) exciton. The spectral shifts are due to drain-field-induced doping that leads to enhanced dielectric screening. Electroluminescence due to electron impact excitation of E(11) excitons is red-shifted and broadened with respect to the zero-field photoluminescence. A combination of screening and heating of the carbon nanotube can explain both spectral shift and broadening of the electrically induced light emission.

[1]  A. Swan,et al.  Screening of excitons in single, suspended carbon nanotubes. , 2006, Nano letters.

[2]  Phaedon Avouris,et al.  Phonon populations and electrical power dissipation in carbon nanotube transistors. , 2009, Nature nanotechnology.

[3]  Phaedon Avouris,et al.  Scaling of excitons in carbon nanotubes. , 2004, Physical review letters.

[4]  Phaedon Avouris,et al.  Bright Infrared Emission from Electrically Induced Excitons in Carbon Nanotubes , 2005, Science.

[5]  J. C. Tsang,et al.  Electrically Induced Optical Emission from a Carbon Nanotube FET , 2003, Science.

[6]  A. Jorio,et al.  Spectro-electrochemical studies of single wall carbon nanotubes films , 2004 .

[7]  Phaedon Avouris,et al.  Electrically excited, localized infrared emission from single carbon nanotubes. , 2006, Nano letters.

[8]  How does the substrate affect the Raman and excited state spectra of a carbon nanotube? , 2009, 0902.1510.

[9]  Eric Pop,et al.  Negative differential conductance and hot phonons in suspended nanotube molecular wires. , 2005, Physical review letters.

[10]  T. Ando Excitons in Carbon Nanotubes , 1997 .

[11]  S. Kishimoto,et al.  Photoluminescence of single-walled carbon nanotubes in field-effect transistors , 2006 .

[12]  M. Dresselhaus,et al.  Electrochemical gating of individual single-wall carbon nanotubes observed by electron transport measurements and resonant Raman spectroscopy , 2004 .

[13]  Fengnian Xia,et al.  A microcavity-controlled, current-driven, on-chip nanotube emitter at infrared wavelengths. , 2008, Nature nanotechnology.

[14]  S. Bachilo,et al.  Electric field quenching of carbon nanotube photoluminescence. , 2008, Nano letters.

[15]  Phaedon Avouris,et al.  Phonon and electronic nonradiative decay mechanisms of excitons in carbon nanotubes. , 2008, Physical review letters.

[16]  Phaedon Avouris,et al.  Carbon-nanotube photonics and optoelectronics , 2008 .

[17]  S. Datta Quantum Transport: Atom to Transistor , 2004 .

[18]  Ladislav Kavan,et al.  Electrochemical Tuning of Electronic Structure of Single-Walled Carbon Nanotubes: In-situ Raman and Vis-NIR Study , 2001 .

[19]  R. Smalley,et al.  Structure-Assigned Optical Spectra of Single-Walled Carbon Nanotubes , 2002, Science.

[20]  S. Louie,et al.  Excitonic effects and optical spectra of single-walled carbon nanotubes. , 2003, Physical review letters.

[21]  C. Thomsen Raman Scattering in Carbon Nanotubes , 2003 .

[22]  Aaron Stein,et al.  Hot Carrier Electroluminescence from a Single Carbon Nanotube , 2004 .

[23]  M. S. Dresselhausa,et al.  Raman spectroscopy of carbon nanotubes , 2004 .

[24]  J. Lefebvre,et al.  Temperature-dependent photoluminescence from single-walled carbon nanotubes , 2004 .

[25]  Louis E. Brus,et al.  Observation of rapid Auger recombination in optically excited semiconducting carbon nanotubes , 2004 .

[26]  F. Hennrich,et al.  Spectroscopy of single- and double-wall carbon nanotubes in different environments. , 2005, Nano letters.

[27]  M. Sfeir,et al.  Structural dependence of excitonic optical transitions and band-gap energies in carbon nanotubes. , 2005, Nano letters.

[28]  Michael S. Strano,et al.  Optical Detection of DNA Conformational Polymorphism on Single-Walled Carbon Nanotubes , 2006, Science.

[29]  R. Pomraenke,et al.  Exciton binding energies in carbon nanotubes from two-photon photoluminescence , 2005 .

[30]  P. Avouris,et al.  Gate-variable light absorption and emission in a semiconducting carbon nanotube. , 2009, Nano letters.

[31]  C. Thomsen,et al.  Electrochemical and Raman measurements on single-walled carbon nanotubes , 2003 .

[32]  Louis E. Brus,et al.  The Optical Resonances in Carbon Nanotubes Arise from Excitons , 2005, Science.