Silicon plasmonics at midinfrared using silicon-insulator-silicon platform

Abstract. We propose devices based on doped silicon. Doped silicon is designed to act as a plasmonic medium in the midinfrared (MIR) range. The surface plasmon frequency of the doped silicon can be tuned within the MIR range, which gives rise to useful properties in the material’s dispersion. We propose various plasmonic configurations that can be utilized for silicon on-chip applications in MIR. These devices have superior performance over conventional silicon devices and provide unique functionalities such as 90-sharp degree bends, T- and X-junction splitters, and stubs. These devices are CMOS-compatible and can be easily integrated with other electronic devices. In addition, the potential for biological and environmental sensing using doped silicon nanowires is demonstrated.

[1]  T. Baehr‐Jones,et al.  Silicon-on-sapphire integrated waveguides for the mid-infrared. , 2009, Optics express.

[2]  Konstantin L. Vodopyanov,et al.  Application of mid-infrared cavity-ringdown spectroscopy to trace explosives vapor detection using a broadly tunable (6–8 μm) optical parametric oscillator , 2002 .

[3]  N. Yu,et al.  Terahertz plasmonics , 2010 .

[4]  Mohamed A. Swillam,et al.  Silicon Waveguides at the Mid-Infrared , 2015, Journal of Lightwave Technology.

[5]  Georgios Veronis,et al.  Guided subwavelength slow-light mode supported by a plasmonic waveguide system. , 2010, Optics letters.

[6]  Xian-Shi Lin,et al.  Tooth-shaped plasmonic waveguide filters with nanometeric sizes. , 2008, Optics letters.

[7]  Alexander Fang,et al.  An all-silicon Raman laser , 2005, Nature.

[8]  S. T. Picraux,et al.  Ion implantation of silicon and germanium at room temperature. Analysis by means of 1.0-MeV helium ion scattering , 1968 .

[9]  Robert L. Jarecki,et al.  Infrared plasmons on heavily-doped silicon , 2011 .

[10]  Qianfan Xu,et al.  Guiding and confining light in void nanostructure. , 2004, Optics letters.

[11]  David E. Aspnes,et al.  Dielectric properties of heavily doped crystalline and amorphous silicon from 1.5 to 6.0 eV , 1984 .

[12]  J. S. Sekhon,et al.  Refractive Index Sensitivity Analysis of Ag, Au, and Cu Nanoparticles , 2011 .

[13]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[14]  Craig F. Bohren,et al.  How can a particle absorb more than the light incident on it , 1983 .

[15]  Antoine Godard,et al.  Infrared (2–12 μm) solid-state laser sources: a review , 2007 .

[16]  Mohamed A. Swillam,et al.  Integrated Metal-Insulator-Metal Plasmonic Nano Resonator: an Analytical Approach , 2013 .

[17]  Backward propagating slow light in inverted plasmonic taper. , 2009, Optics express.

[18]  Michele Follen,et al.  Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles. , 2003, Cancer research.

[19]  Mohamed A. Swillam,et al.  Plasmonic waveguides in mid-infrared using silicon-insulator-silicon , 2015, Photonics West - Optoelectronic Materials and Devices.

[20]  Ross Stanley,et al.  Plasmonics in the mid-infrared , 2012, Nature Photonics.

[21]  J. A. Davies,et al.  ION IMPLANTATION OF SILICON: I. ATOM LOCATION AND LATTICE DISORDER BY MEANS OF 1.0-MeV HELIUM ION SCATTERING , 1967 .

[22]  R. E. Thomas,et al.  Carrier mobilities in silicon empirically related to doping and field , 1967 .

[23]  M. Wegener,et al.  Plasmonics: backward waves moving forward. , 2007, Nature materials.

[24]  Mohamed A Swillam,et al.  Analysis and applications of 3D rectangular metallic waveguides. , 2010, Optics express.

[25]  H. Driel Optical effective mass of high density carriers in silicon , 1984 .

[26]  Kui Jiao,et al.  Colorimetric detection of mercury ion (Hg2+) based on DNA oligonucleotides and unmodified gold nanoparticles sensing system with a tunable detection range. , 2009, Biosensors & bioelectronics.

[27]  A. Axmann,et al.  1.54‐μm electroluminescence of erbium‐doped silicon grown by molecular beam epitaxy , 1985 .

[28]  N. Natsuaki,et al.  Change of the electron effective mass in extremely heavily doped n-type Si obtained by ion implantation and laser annealing , 1981 .

[29]  L. Rodriguez-Saona,et al.  Application of NIR and MIR spectroscopy in quality control of potato chips. , 2009 .

[30]  Daniel Wasserman,et al.  Towards nano-scale photonics with micro-scale photons: the opportunities and challenges of mid-infrared plasmonics , 2013 .

[31]  A. Helmy,et al.  Optically defined plasmonic waveguides in crystalline semiconductors at optical frequencies , 2013, CLEO: 2013.

[32]  M. El-Sayed,et al.  Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition. , 2006, The journal of physical chemistry. B.

[33]  Xiaohua Huang,et al.  Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. , 2006, Cancer letters.

[34]  Marek Piliarik,et al.  Local refractive index sensitivity of plasmonic nanoparticles. , 2011, Optics express.

[35]  T. Taliercio,et al.  Localized surface plasmon resonances in highly doped semiconductors nanostructures , 2012 .

[36]  Richard A. Soref,et al.  Infrared surface plasmons on heavily doped silicon , 2011 .

[37]  Mohamed A. Swillam,et al.  Analytical model for metal-insulator-metal mesh waveguide architectures , 2012 .

[38]  W. Schade,et al.  Near- and mid-infrared laser monitoring of industrial processes, environment and security applications , 2006 .

[39]  J. C. van den Heuvel,et al.  Development of a mid-infrared laser for study of infrared countermeasures techniques , 2004, SPIE Security + Defence.

[40]  P. Biagioni,et al.  Integrating mid-IR plasmonics with CMOS sensing devices , 2016 .

[41]  Claire M. Cobley,et al.  Shape-Controlled Synthesis of Silver Nanoparticles for Plasmonic and Sensing Applications , 2009 .

[42]  K. P. Petrov,et al.  Room-temperature mid-infrared laser sensor for trace gas detection. , 1997, Applied optics.

[43]  Shanhui Fan,et al.  Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides , 2005 .

[44]  Xiaohua Huang,et al.  Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. , 2006, Journal of the American Chemical Society.

[45]  M. A. Swillam,et al.  Feedback Effects in Plasmonic Slot Waveguides Examined Using a Closed Form Model , 2012, IEEE Photonics Technology Letters.

[46]  P. Werle,et al.  Near- and mid-infrared laser-optical sensors for gas analysis , 2002 .

[47]  A. Slaoui,et al.  Determination of the Electron Effective Mass and Relaxation Time in Heavily Doped Silicon , 1985, June 16.