The Herschel Planetary Nebula Survey (HerPlaNS) - I. Data overview and analysis demonstration with NGC 6781

Context. This is the first of a series of investigations into far-IR characteristics of 11 planetary nebulae (PNe) under the Herschel Space Observatory open time 1 program, Herschel Planetary Nebula Survey (HerPlaNS). Aims. Using the HerPlaNS data set, we look into the PN energetics and variations of the physical conditions within the target nebulae. In the present work, we provide an overview of the survey, data acquisition and processing, and resulting data products. Methods. We performed (1) PACS/SPIRE broadband imaging to determine the spatial distribution of the cold dust component in the target PNe and (2) PACS/SPIRE spectral-energy-distribution and line spectroscopy to determine the spatial distribution of the gas component in the target PNe. Results. For the case of NGC 6781, the broadband maps confirm the nearly pole-on barrel structure of the amorphous carbon-rich dust shell and the surrounding halo having temperatures of 26-40 K. The PACS/SPIRE multiposition spectra show spatial variations of far-.IR lines that reflect the physical stratification of the nebula. We demonstrate that spatially resolved far-IR line diagnostics yield the (T-e, n(e)) profiles, from which distributions of ionized, atomic, and molecular gases can be determined. Direct comparison of the dust and gas column mass maps constrained by the HerPlaNS data allows to construct an empirical gas-to-dust mass ratio map, which shows a range of ratios with the median of 195 +/- 110. The present analysis yields estimates of the total mass of the shell to be 0.86 M-circle dot, consisting of 0.54 M-circle dot of ionized gas, 0.12 M-circle dot of atomic gas, 0.2 M-circle dot of molecular gas, and 4 x 10(-3) M-circle dot of dust grains. These estimates' also suggest that the central star of about 1.5 M-circle dot initial mass is terminating its PN evolution onto the white dwarf cooling track. Conclusions. The HerPlaNS data provide various diagnostics for both the dust and gas components in a spatially resolved manner. In the forthcoming papers of the HerPlaNS series we will explore the HerPlaNS data set fully for the entire sample of 11 PNe.

[1]  M. Barlow,et al.  A Herschel study of NGC 650 , 2013, 1308.2477.

[2]  P. Magain,et al.  Herschel imaging and spectroscopy of the nebula around the luminous blue variable star WRAY 15-751 , , 2013, 1307.0759.

[3]  Sydney,et al.  Analysis of Far-UV Data of Central Stars of Planetary Nebulae: Occurrence and Variability of Stellar Winds , 2013, 1303.1530.

[4]  H'elene Roussel,et al.  Scanamorphos: A Map-making Software for Herschel and Similar Scanning Bolometer Arrays , 2012, 1205.2576.

[5]  S. Kwok,et al.  DISCOVERY OF A HALO AROUND THE HELIX NEBULA NGC 7293 IN THE WISE ALL-SKY SURVEY , 2012, 1207.4606.

[6]  Astrophysics,et al.  THE CHANDRA X-RAY SURVEY OF PLANETARY NEBULAE (ChanPlaNS): PROBING BINARITY, MAGNETIC FIELDS, AND WIND COLLISIONS , 2012, 1204.6055.

[7]  K. Gordon,et al.  THE DUST BUDGET OF THE SMALL MAGELLANIC CLOUD: ARE ASYMPTOTIC GIANT BRANCH STARS THE PRIMARY DUST SOURCE AT LOW METALLICITY? , 2012 .

[8]  K. Gordon,et al.  The Dust Budget of the SMC: Are AGB Stars the Primary Dust Source at Low Metallicity? , 2012, 1201.5384.

[9]  M. Guerrero,et al.  Optical and mid-infrared observations of the planetary nebula NGC 6781 , 2011, 1106.3706.

[10]  D. A. García-Hernández,et al.  FAR-INFRARED IMAGING OF POST-ASYMPTOTIC GIANT BRANCH STARS AND (PROTO)-PLANETARY NEBULAE WITH THE AKARI FAR-INFRARED SURVEYOR , 2011, 1101.3450.

[11]  M. Morris,et al.  YOUNG PLANETARY NEBULAE: HUBBLE SPACE TELESCOPE IMAGING AND A NEW MORPHOLOGICAL CLASSIFICATION SYSTEM , 2011, 1101.2214.

[12]  O. Krause,et al.  MESS (Mass-loss of Evolved StarS), a Herschel key program , 2010, 1012.2701.

[13]  S. Ott,et al.  Herschel Space Observatory - An ESA facility for far-infrared and submillimetre astronomy , 2010, 1005.5331.

[14]  S. J. Liu,et al.  Herschel : the first science highlights Special feature L etter to the E ditor The Herschel-SPIRE instrument and its in-flight performance , 2010 .

[15]  R. Corradi,et al.  New Candidate Planetary Nebulae in the IPHAS Survey: the Case of Planetary Nebulae with ISM interaction , 2009, Publications of the Astronomical Society of Australia.

[16]  M. Asplund,et al.  The chemical composition of the Sun , 2009, 0909.0948.

[17]  A. Kholtygin,et al.  He, C, N, and O abundances in an ensemble of galactic planetary nebulae , 2009 .

[18]  R. Stompor,et al.  MADmap: A MASSIVELY PARALLEL MAXIMUM LIKELIHOOD COSMIC MICROWAVE BACKGROUND MAP-MAKER , 2009, 0906.1775.

[19]  M. Barlow,et al.  The global gas and dust budget of the Large Magellanic Cloud: AGB stars and supernovae, and the impact on the ISM evolution , 2009, 0903.1123.

[20]  Martin M. Roth,et al.  Spatially resolved spectroscopy of planetary nebulae and their halos - I. Five galactic disk objects , 2008, 0802.3813.

[21]  Thomas Henning,et al.  The Photodetector Array Camera and Spectrometer (PACS) for the Herschel Space Observatory , 2004, Astronomical Telescopes + Instrumentation.

[22]  University College London,et al.  Spitzer Space Telescope spectral observations of AGB stars in the Fornax dwarf spheroidal galaxy , 2007, 0709.3199.

[23]  S. Oh,et al.  The infrared astronomical mission AKARI , 2007, 0708.1796.

[24]  P. J. Huggins,et al.  A Debris Disk around the Central Star of the Helix Nebula? , 2007, astro-ph/0702296.

[25]  S. O. Kepler,et al.  White dwarf mass distribution in the SDSS , 2006, astro-ph/0612277.

[26]  R. Gruendl,et al.  XMM-Newton Observations of the Bipolar Planetary Nebulae NGC 2346 and NGC 7026 , 2006 .

[27]  T. Ueta TO APPEAR IN APJ Preprint typeset using LATEX style emulateapj v. 6/22/04 SPITZER/MIPS IMAGING OF NGC 650: PROBING THE HISTORY OF MASS LOSS ON THE ASYMPTOTIC GIANT BRANCH , 2006 .

[28]  A. Zijlstra,et al.  The shaping of planetary nebula Sh 2-188 through interaction with the interstellar medium , 2005, astro-ph/0512028.

[29]  A. Tielens The Physics and Chemistry of the Interstellar Medium , 2005 .

[30]  D. Hiriart Molecular hydrogen kinematics in the ring-like planetary nebula NGC 6781 , 2005 .

[31]  R. Corradi,et al.  The evolution of planetary nebulae. II. Circumstellar environment and expansion properties , 2005 .

[32]  E. Wright,et al.  The Spitzer Space Telescope Mission , 2004, astro-ph/0406223.

[33]  M. Barlow,et al.  A deep survey of heavy element lines in planetary nebulae – II. Recombination-line abundances and evidence for cold plasma , 2004, astro-ph/0404280.

[34]  Andreas Wicenec,et al.  Galactic planetary nebulae and their central stars. I. An accurate and homogeneous set of coordinates , 2003 .

[35]  N. Smith Spatial distribution of near‐infrared and optical emission properties in the bipolar nebula Menzel 3 , 2003 .

[36]  Joel H. Kastner,et al.  A Compact X-Ray Source and Possible X-Ray Jets within the Planetary Nebula Menzel 3 , 2003, astro-ph/0305331.

[37]  R. Corradi,et al.  Ionized haloes in planetary nebulae: new discoveries, literature compilation and basic statistical properties , 2003 .

[38]  K. Leech,et al.  The ISO handbook , 2003 .

[39]  A. Manchado,et al.  The Dynamical Evolution of the Circumstellar Gas around Low- and Intermediate-Mass Stars. II. The Planetary Nebula Formation , 2002, astro-ph/0208323.

[40]  J. Yates,et al.  Submillimetre photometry of post‐asymptotic giant branch stars , 2002 .

[41]  W. Goss,et al.  VLA Observations of H I in the Helix Nebula (NGC 7293) , 2002, astro-ph/0204088.

[42]  M. C. Weisskopf,et al.  An Overview of the Performance and Scientific Results from the Chandra X‐Ray Observatory , 2001, astro-ph/0110308.

[43]  P. McCullough,et al.  Large-Scale Extended Emission around the Helix Nebula: Dust, Molecules, Atoms, and Ions , 2002 .

[44]  F. Mavromatakis,et al.  The physical structure of the planetary nebula NGC 6781 , 2001 .

[45]  S. Malhotra,et al.  Far-Infrared Spectroscopy of Normal Galaxies: Physical Conditions in the Interstellar Medium , 2001, astro-ph/0106485.

[46]  R. Tylenda,et al.  An analysis of the observed radio emission from planetary nebulae , 2001, astro-ph/0105303.

[47]  P. Cox,et al.  ISO LWS observations of planetary nebula fine‐structure lines , 2001 .

[48]  S. Kwok The Origin and Evolution of Planetary Nebulae , 2000 .

[49]  P. Goldsmith,et al.  Population Diagram Analysis of Molecular Line Emission , 1999 .

[50]  K. Sunkwo,et al.  The Origin and Evolution of Planetary Nebulae , 2000 .

[51]  Joseph L. Hora,et al.  Investigating the Near-Infrared Properties of Planetary Nebulae II. Mediur/i Resolution Spectra , 2000 .

[52]  R. Shaw,et al.  SOFTWARE FOR THE ANALYSIS OF EMISSION LINE NEBULAE , 1995 .

[53]  M. Barlow,et al.  Chemical abundances of planetary nebulae from optical recombination lines – III. The Galactic bulge PN M 1‐42 and M 2‐36 , 2001 .

[54]  P. Bowers,et al.  Detection of Radio Continuum Emission from Circumstellar Dust around CRL 2688 and IRC +10216 , 1994 .

[55]  P. Wood,et al.  Post-asymptotic giant branch evolution of low- to intermediate-mass stars , 1994 .

[56]  S. Lord,et al.  Nebular properties from far-infrared spectrosopy , 1994 .

[57]  E. I. Robson,et al.  The dust content of evolved circumstellar envelopes and the optical properties of dust at submillimeter to radio wavelengths , 1993 .

[58]  Peter G. Martin,et al.  Shape and clustering effects on the optical properties of amorphous carbon , 1991 .

[59]  S. Kwok,et al.  Spectral evolution of asymptotic giant branch stars , 1988 .

[60]  R. Genzel,et al.  Interpretation of rotationally excited far-infrared OH emission in Orion-KL , 1987 .

[61]  G. Knapp Mass loss from evolved stars. IV - The dust-to-gas ratio in the envelopes of Mira variables and carbon stars , 1985 .

[62]  H. M. Lee,et al.  Optical properties of interstellar graphite and silicate grains , 1984 .

[63]  Z. Kam,et al.  Absorption and Scattering of Light by Small Particles , 1998 .

[64]  K. Nordsieck,et al.  The Size distribution of interstellar grains , 1977 .

[65]  M. Brocklehurst,et al.  Calculations of Level Populations for the Low Levels of Hydrogenic Ions in Gaseous Nebulae , 1971 .

[66]  D. Menzel,et al.  Physical Processes in Gaseous Nebulae. III. The Balmer Decrement. , 1938 .

[67]  A. Schuster On the absorption and scattering of light , 1920 .