Recent advances in liquid and polymer lithium-ion batteries

New types of electrode and electrolyte materials have been investigated and characterized in our laboratory. These include high capacity lithium–tin alloys, high-rate lithium titanium oxide and high conductivity gel-type, polymer electrolytes. The results obtained, collected in this article, demonstrate that these materials may be combined for the development of new types of liquid and polymer lithium-ion batteries having impressive features in terms of capacity, stability, high rates and, particularly, safety. Taking this into consideration, these batteries appear suitable power sources for electric or hybrid vehicles.

[1]  L. Nazar,et al.  Small polaron hopping in Li(x)FePO4 solid solutions: coupled lithium-ion and electron mobility. , 2006, Journal of the American Chemical Society.

[2]  T. Yokoshima,et al.  Electrodeposited Sn-Ni alloy film as a high capacity anode material for lithium-ion secondary batteries , 2003 .

[3]  Tsutomu Ohzuku,et al.  Zero‐Strain Insertion Material of Li [ Li1 / 3Ti5 / 3 ] O 4 for Rechargeable Lithium Cells , 1995 .

[4]  B. Scrosati,et al.  Polymer Concentration Dependence of the Dynamics in Gel Electrolytes , 2000 .

[5]  Jing Li,et al.  Sodium Carboxymethyl Cellulose A Potential Binder for Si Negative Electrodes for Li-Ion Batteries , 2007 .

[6]  Jean-Marie Tarascon,et al.  The existence of a temperature-driven solid solution in LixFePO4 for 0 ≤ x ≤ 1 , 2005 .

[7]  Martin Winter,et al.  Electrochemical lithiation of tin and tin-based intermetallics and composites , 1999 .

[8]  Bruno Scrosati,et al.  A Novel Concept for the Synthesis of an Improved LiFePO4 Lithium Battery Cathode , 2002 .

[9]  B. Scrosati,et al.  Sustainable High-Voltage Lithium Ion Polymer Batteries , 2005 .

[10]  P. Bruce,et al.  TiO2(B) Nanowires as an Improved Anode Material for Lithium‐Ion Batteries Containing LiFePO4 or LiNi0.5Mn1.5O4 Cathodes and a Polymer Electrolyte , 2006 .

[11]  J. Tarascon,et al.  High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications , 2006, Nature materials.

[12]  B. Scrosati,et al.  High-Resolution In-Situ Structural Measurements of the Li4/3Ti5/3O4 “Zero-Strain” Insertion Material , 2002 .

[13]  B. Scrosati,et al.  The Ni3Sn4 intermetallic as a novel electrode in lithium cells , 2005 .

[14]  Margret Wohlfahrt-Mehrens,et al.  Fine-particle lithium iron phosphate LiFePO4 synthesized by a new low-cost aqueous precipitation technique , 2003 .

[15]  Werner Weppner,et al.  Evidence of Two‐Phase Formation upon Lithium Insertion into the Li1.33Ti1.67 O 4 Spinel , 1999 .

[16]  John B. Goodenough,et al.  Effect of Structure on the Fe3 + / Fe2 + Redox Couple in Iron Phosphates , 1997 .

[17]  Peter G. Bruce,et al.  Lithium‐Ion Intercalation into TiO2‐B Nanowires , 2005 .

[18]  J. Dahn,et al.  Synthesis and Electrochemistry of LiNi x Mn2 − x O 4 , 1997 .

[19]  B. Scrosati,et al.  Diffusive and segmental dynamics in polymer gel electrolytes , 1999 .

[20]  Yet-Ming Chiang,et al.  Electronically conductive phospho-olivines as lithium storage electrodes , 2002, Nature materials.

[21]  J. Dahn,et al.  Mechanically Alloyed Sn‐Fe(‐C) Powders as Anode Materials for Li‐Ion Batteries: III. Sn2Fe : SnFe3 C Active/Inactive Composites , 1999 .

[22]  Peng Wang,et al.  A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte , 2003, Nature materials.

[23]  P. Bruce,et al.  TiO2(B) nanotubes as negative electrodes for rechargeable lithium batteries , 2006 .

[24]  P. Bruce,et al.  Nanostructured materials for advanced energy conversion and storage devices , 2005, Nature materials.

[25]  Bruno Scrosati,et al.  High‐Rate, Long‐Life Ni–Sn Nanostructured Electrodes for Lithium‐Ion Batteries , 2007 .

[26]  B. Scrosati,et al.  A New Type of Lithium-ion Battery Based on Tin ElectroplatedNegative Electrodes , 2006, International Journal of Electrochemical Science.

[27]  Tsutomu Ohzuku,et al.  Solid-state redox potentials for Li[Me1/2Mn3/2]O4 (Me: 3d-transition metal) having spinel-framework structures: a series of 5 volt materials for advanced lithium-ion batteries , 1999 .

[28]  M. Wohlfahrt‐Mehrens,et al.  A Safe, Low-Cost, and Sustainable Lithium-Ion Polymer Battery , 2004 .

[29]  B. Scrosati,et al.  Electrodeposited Ni–Sn intermetallic electrodes for advanced lithium ion batteries , 2006 .

[30]  B. Scrosati New approaches to developing lithium polymer batteries. , 2001, Chemical record.

[31]  Nathalie Ravet,et al.  On the electronic conductivity of phospho-olivines as lithium storage electrodes , 2003, Nature materials.

[32]  B. Scrosati,et al.  High-performance gel-type lithium electrolyte membranes , 1999 .

[33]  M. Wagner,et al.  The effect of the binder morphology on the cycling stability of Li–alloy composite electrodes , 2001 .

[34]  B. Scrosati,et al.  A LiTi2O4–LiFePO4 novel lithium-ion polymer battery , 2002 .

[35]  B. Scrosati,et al.  Ternary Sn-Co-C Li-ion battery electrode material prepared by high energy ball milling , 2007 .