Simulating quantum many-body dynamics on a current digital quantum computer

Universal quantum computers are potentially an ideal setting for simulating many-body quantum dynamics that is out of reach for classical digital computers. We use state-of-the-art IBM quantum computers to study paradigmatic examples of condensed matter physics—we simulate the effects of disorder and interactions on quantum particle transport, as well as correlation and entanglement spreading. Our benchmark results show that the quality of the current machines is below what is necessary for quantitatively accurate continuous-time dynamics of observables and reachable system sizes are small comparable to exact diagonalization. Despite this, we are successfully able to demonstrate clear qualitative behaviour associated with localization physics and many-body interaction effects.

[1]  M. Schreiber,et al.  Observation of many-body localization of interacting fermions in a quasirandom optical lattice , 2015, Science.

[2]  A. Chiesa,et al.  Quantum hardware simulating four-dimensional inelastic neutron scattering , 2018, Nature Physics.

[3]  A. A. Zhukov,et al.  Algorithmic simulation of far-from-equilibrium dynamics using quantum computer , 2018, Quantum Information Processing.

[4]  D. W. Robinson,et al.  The finite group velocity of quantum spin systems , 1972 .

[5]  N. Mermin Whats Wrong with those Epochs , 1990 .

[6]  Peter Zoller,et al.  Measuring multipartite entanglement through dynamic susceptibilities , 2015, Nature Physics.

[7]  Andrew S. Dzurak,et al.  Gate-based single-shot readout of spins in silicon , 2018, Nature Nanotechnology.

[8]  S. Lawrence,et al.  Simulation of Nonequilibrium Dynamics on a Quantum Computer. , 2018, Physical review letters.

[9]  John Chiaverini,et al.  Trapped-ion quantum computing: Progress and challenges , 2019, Applied Physics Reviews.

[10]  G. Wendin Quantum information processing with superconducting circuits: a review , 2016, Reports on progress in physics. Physical Society.

[11]  P. Anderson Absence of Diffusion in Certain Random Lattices , 1958 .

[12]  Jun Gao,et al.  Mapping and measuring large-scale photonic correlation with single-photon imaging , 2018, Optica.

[13]  Colin P. Williams,et al.  Optimal quantum circuits for general two-qubit gates (5 pages) , 2003, quant-ph/0308006.

[14]  Kenny Choo,et al.  Measurement of the Entanglement Spectrum of a Symmetry-Protected Topological State Using the IBM Quantum Computer. , 2018, Physical review letters.

[15]  J. Cirac,et al.  Quantum Computations with Cold Trapped Ions. , 1995, Physical review letters.

[16]  P. Calabrese,et al.  Real-time confinement following a quantum quench to a non-integrable model , 2016, Nature Physics.

[17]  Bei Zeng,et al.  16-qubit IBM universal quantum computer can be fully entangled , 2018, npj Quantum Information.

[18]  E. Solano,et al.  Quantum-classical computation of Schwinger model dynamics using quantum computers , 2018, Physical Review A.

[19]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[20]  J. D. Wong-Campos,et al.  Benchmarking an 11-qubit quantum computer , 2019, Nature Communications.

[21]  Benni Reznik,et al.  Quantum simulations of lattice gauge theories using ultracold atoms in optical lattices , 2015, Reports on progress in physics. Physical Society.

[22]  J. Gambetta,et al.  Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets , 2017, Nature.

[23]  U. Wiese Ultracold quantum gases and lattice systems: quantum simulation of lattice gauge theories , 2013, 1305.1602.

[24]  F. Alet,et al.  Many-body localization edge in the random-field Heisenberg chain , 2014, 1411.0660.

[25]  Immanuel Bloch,et al.  Probing Slow Relaxation and Many-Body Localization in Two-Dimensional Quasiperiodic Systems , 2017, 1704.03063.

[26]  B. Kramer,et al.  Localization: theory and experiment , 1993 .

[27]  John M. Martinis,et al.  Logic gates at the surface code threshold: Superconducting qubits poised for fault-tolerant quantum computing , 2014 .

[28]  G. Refael,et al.  From Bloch oscillations to many-body localization in clean interacting systems , 2018, Proceedings of the National Academy of Sciences.

[29]  Alán Aspuru-Guzik,et al.  Photonic quantum simulators , 2012, Nature Physics.

[30]  M. Mariantoni,et al.  Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.

[31]  P. Coveney,et al.  Scalable Quantum Simulation of Molecular Energies , 2015, 1512.06860.

[32]  I. Klich,et al.  Entanglement entropy from charge statistics: Exact relations for noninteracting many-body systems , 2010, 1008.5191.

[33]  F. Essler,et al.  Quench dynamics and relaxation in isolated integrable quantum spin chains , 2016, 1603.06452.

[34]  J. Cirac,et al.  Optimal creation of entanglement using a two-qubit gate , 2000, quant-ph/0011050.

[35]  Y. Pashkin,et al.  Coherent control of macroscopic quantum states in a single-Cooper-pair box , 1999, Nature.

[36]  R. C. Macridis A review , 1963 .

[37]  P. Zoller,et al.  Digital quantum simulation, Trotter errors, and quantum chaos of the kicked top , 2018, npj Quantum Information.

[38]  S. Lloyd,et al.  Quantum-Enhanced Measurements: Beating the Standard Quantum Limit , 2004, Science.

[39]  Diego Garc'ia-Mart'in,et al.  Quantum singular value decomposer , 2019, 1905.01353.

[40]  Sergey Bravyi,et al.  Correcting coherent errors with surface codes , 2017, npj Quantum Information.

[41]  A. Vasiliev,et al.  Milestones of low-D quantum magnetism , 2018 .

[42]  Dmitry A. Abanin,et al.  Recent progress in many‐body localization , 2017, 1705.09103.

[43]  Fei Yan,et al.  A quantum engineer's guide to superconducting qubits , 2019, Applied Physics Reviews.

[44]  Peter T. Brown,et al.  Quantum gas microscopy of an attractive Fermi–Hubbard system , 2017, Nature Physics.

[45]  R. Johnsen,et al.  Theory and Experiment , 2010 .

[46]  G. Tóth,et al.  Multipartite entanglement and high precision metrology , 2010, 1006.4368.

[47]  Augusto Smerzi,et al.  Fisher information and multiparticle entanglement , 2010, 1006.4366.

[48]  Hideharu Amano,et al.  Extracting Success from IBM’s 20-Qubit Machines Using Error-Aware Compilation , 2019, ACM J. Emerg. Technol. Comput. Syst..

[49]  Jacob biamonte,et al.  Quantum machine learning , 2016, Nature.

[50]  J. Dalibard,et al.  Many-Body Physics with Ultracold Gases , 2007, 0704.3011.

[51]  L. Pezzè,et al.  Entanglement, nonlinear dynamics, and the heisenberg limit. , 2007, Physical review letters.

[52]  Markus Greiner,et al.  A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice , 2009, Nature.

[53]  Jay M. Gambetta,et al.  Maximum Likelihood, Minimum Effort , 2011, 1106.5458.

[54]  Romain Vasseur,et al.  Nonequilibrium quantum dynamics and transport: from integrability to many-body localization , 2016, 1603.06618.

[55]  S. Simon,et al.  Non-Abelian Anyons and Topological Quantum Computation , 2007, 0707.1889.

[56]  Peter Zoller,et al.  Quantum localization bounds Trotter errors in digital quantum simulation , 2018, Science Advances.

[57]  N. Hatano,et al.  Finding Exponential Product Formulas of Higher Orders , 2005, math-ph/0506007.

[58]  John A Smolin,et al.  Efficient method for computing the maximum-likelihood quantum state from measurements with additive Gaussian noise. , 2012, Physical review letters.

[59]  Gregory H. Wannier,et al.  Dynamics of Band Electrons in Electric and Magnetic Fields , 1962 .

[60]  Guanyu Zhu,et al.  Hardware-efficient fermionic simulation with a cavity–QED system , 2017, 1707.04760.

[61]  R. Nandkishore,et al.  Many-Body Localization and Thermalization in Quantum Statistical Mechanics , 2014, 1404.0686.

[62]  A. Houck,et al.  On-chip quantum simulation with superconducting circuits , 2012, Nature Physics.

[63]  B. Hensen,et al.  Silicon qubit fidelities approaching incoherent noise limits via pulse engineering , 2018, Nature Electronics.

[64]  Dmitri Maslov,et al.  Parallel entangling operations on a universal ion-trap quantum computer , 2018, Nature.

[65]  W. Munro,et al.  Quantum error correction for beginners , 2009, Reports on progress in physics. Physical Society.

[66]  Dmitri Maslov,et al.  Ground-state energy estimation of the water molecule on a trapped ion quantum computer , 2019, ArXiv.

[67]  今井 浩 20世紀の名著名論:Peter Shor : Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 2004 .

[68]  E. Davies,et al.  PROBABILISTIC AND STATISTICAL ASPECTS OF QUANTUM THEORY (North‐Holland Series in Statistics and Probability, 1) , 1984 .

[69]  Mirko Amico,et al.  Experimental study of Shor's factoring algorithm using the IBM Q Experience , 2019, Physical Review A.

[70]  R. Barends,et al.  Superconducting quantum circuits at the surface code threshold for fault tolerance , 2014, Nature.

[71]  H. Neven,et al.  Characterizing quantum supremacy in near-term devices , 2016, Nature Physics.

[72]  A. Peruzzo,et al.  Quantum interference of topological states of light , 2018, Science Advances.

[73]  P. Hauke,et al.  Quantum simulation of lattice gauge theories using Wilson fermions , 2018, Quantum Science and Technology.

[74]  Aaron C. E. Lee,et al.  Many-body localization in a quantum simulator with programmable random disorder , 2015, Nature Physics.

[75]  L. Ballentine,et al.  Probabilistic and Statistical Aspects of Quantum Theory , 1982 .

[76]  N. Mermin What's Wrong with these Elements of Reality? , 1990 .

[77]  I. Klich,et al.  Bipartite fluctuations as a probe of many-body entanglement , 2011, 1109.1001.

[78]  Kentaro Tamura,et al.  Quantum Random Numbers generated by the Cloud Superconducting Quantum Computer , 2019, ArXiv.

[79]  Jiannis K. Pachos,et al.  A Short Introduction to Topological Quantum Computation , 2017, 1705.04103.

[80]  Jae-yoon Choi,et al.  Exploring the many-body localization transition in two dimensions , 2016, Science.

[81]  Alexandre Blais,et al.  Quantum information processing with circuit quantum electrodynamics , 2007 .

[82]  D. Huse,et al.  Many-body localization phase transition , 2010, 1010.1992.

[83]  J. Bardarson,et al.  Multiscale entanglement clusters at the many-body localization phase transition , 2018, Physical Review B.

[84]  I. Klich,et al.  Quantum noise as an entanglement meter. , 2008, Physical review letters.

[85]  C. Helstrom Quantum detection and estimation theory , 1969 .

[86]  R. Feynman Simulating physics with computers , 1999 .

[87]  P. W. Hess,et al.  Observation of a discrete time crystal , 2016, Nature.

[88]  M. L. Wall,et al.  Measuring out-of-time-order correlations and multiple quantum spectra in a trapped-ion quantum magnet , 2016, Nature Physics.

[89]  J. Dalibard,et al.  Topological bands for ultracold atoms. , 2018, Reviews of modern physics.

[90]  Alba Cervera-Lierta Exact Ising model simulation on a quantum computer , 2018, Quantum.

[91]  C. Hooley,et al.  Stark Many-Body Localization. , 2018, Physical review letters.

[92]  A. I. Zenchuk,et al.  Solving systems of linear algebraic equations via unitary transformations on quantum processor of IBM Quantum Experience , 2019, Quantum Inf. Process..

[93]  T. Monz,et al.  Real-time dynamics of lattice gauge theories with a few-qubit quantum computer , 2016, Nature.

[94]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.