The Docking Problem

[1]  PatrickY.-S. Lam,et al.  Rational design of potent, bioavailable, nonpeptide cyclic ureas as HIV protease inhibitors. , 1994, Science.

[2]  Daniel A. Gschwend,et al.  Orientational sampling and rigid-body minimization in molecular docking revisited: On-the-fly optimization and degeneracy removal , 1996, J. Comput. Aided Mol. Des..

[3]  Elaine C. Meng,et al.  Evaluating docked complexes with the HINT exponential function and empirical atomic hydrophobicities , 1994, J. Comput. Aided Mol. Des..

[4]  Hans-Joachim Böhm,et al.  The development of a simple empirical scoring function to estimate the binding constant for a protein-ligand complex of known three-dimensional structure , 1994, J. Comput. Aided Mol. Des..

[5]  Leach,et al.  The in silico world of virtual libraries. , 2000, Drug discovery today.

[6]  Ruben Abagyan,et al.  Identification of ligands for RNA targets via structure-based virtual screening: HIV-1 TAR , 2000, J. Comput. Aided Mol. Des..

[7]  D. Covell,et al.  Docking enzyme‐inhibitor complexes using a preference‐based free‐energy surface , 1996, Proteins.

[8]  I. Kuntz,et al.  Inclusion of Solvation in Ligand Binding Free Energy Calculations Using the Generalized-Born Model , 1999 .

[9]  R Abagyan,et al.  High-throughput docking for lead generation. , 2001, Current opinion in chemical biology.

[10]  Simon K. Kearsley,et al.  An alternative method for the alignment of molecular structures: Maximizing electrostatic and steric overlap , 1990 .

[11]  Gennady Verkhivker,et al.  Deciphering common failures in molecular docking of ligand-protein complexes , 2000, J. Comput. Aided Mol. Des..

[12]  E. Shakhnovich,et al.  SMall Molecule Growth 2001 (SMoG2001): an improved knowledge-based scoring function for protein-ligand interactions. , 2002, Journal of medicinal chemistry.

[13]  Thomas Lengauer,et al.  FlexE: efficient molecular docking considering protein structure variations. , 2001, Journal of molecular biology.

[14]  G. Klebe The use of composite crystal-field environments in molecular recognition and the de novo design of protein ligands. , 1994, Journal of molecular biology.

[15]  F. Bushman,et al.  Developing a dynamic pharmacophore model for HIV-1 integrase. , 2000, Journal of medicinal chemistry.

[16]  I. Kuntz,et al.  Using shape complementarity as an initial screen in designing ligands for a receptor binding site of known three-dimensional structure. , 1988, Journal of medicinal chemistry.

[17]  Ajay,et al.  Computational methods to predict binding free energy in ligand-receptor complexes. , 1995, Journal of medicinal chemistry.

[18]  Shaomeng Wang,et al.  MCDOCK: A Monte Carlo simulation approach to the molecular docking problem , 1999, J. Comput. Aided Mol. Des..

[19]  J M Blaney,et al.  A geometric approach to macromolecule-ligand interactions. , 1982, Journal of molecular biology.

[20]  Gerhard Klebe,et al.  Utilising structural knowledge in drug design strategies: applications using Relibase. , 2003, Journal of molecular biology.

[21]  R. M. Burnett,et al.  DARWIN: A program for docking flexible molecules , 2000, Proteins.

[22]  M. Mizutani,et al.  Rational automatic search method for stable docking models of protein and ligand. , 1994, Journal of molecular biology.

[23]  G. Vriend,et al.  Molecular docking using surface complementarity , 1996, Proteins.

[24]  David S. Goodsell,et al.  Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function , 1998 .

[25]  Yuan-Ping Pang,et al.  Prediction of the binding sites of huperzine A in acetylcholinesterase by docking studies , 1994, J. Comput. Aided Mol. Des..

[26]  I. Kuntz,et al.  Flexible ligand docking: A multistep strategy approach , 1999, Proteins.

[27]  A. Leach,et al.  Ligand docking to proteins with discrete side-chain flexibility. , 1994, Journal of molecular biology.

[28]  P. Kollman,et al.  An all atom force field for simulations of proteins and nucleic acids , 1986, Journal of computational chemistry.

[29]  Luhua Lai,et al.  SCORE: A New Empirical Method for Estimating the Binding Affinity of a Protein-Ligand Complex , 1998 .

[30]  C L Brooks,et al.  Do active site conformations of small ligands correspond to low free-energy solution structures? , 1998, Journal of computer-aided molecular design.

[31]  H A Scheraga,et al.  Reaching the global minimum in docking simulations: a Monte Carlo energy minimization approach using Bezier splines. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[32]  Sandor Vajda,et al.  Protein-protein association kinetics and protein docking. , 2002, Current Opinion in Structural Biology.

[33]  I. Enyedy,et al.  Structural basis of binding of high-affinity ligands to protein kinase C: prediction of the binding modes through a new molecular dynamics method and evaluation by site-directed mutagenesis. , 2001, Journal of medicinal chemistry.

[34]  S Vajda,et al.  Effect of conformational flexibility and solvation on receptor-ligand binding free energies. , 1994, Biochemistry.

[35]  A. Elcock,et al.  Computer Simulation of Protein−Protein Interactions , 2001 .

[36]  R Abagyan,et al.  Flexible protein–ligand docking by global energy optimization in internal coordinates , 1997, Proteins.

[37]  I. Kuntz,et al.  Matching chemistry and shape in molecular docking. , 1993, Protein engineering.

[38]  Tim D. J. Perkins,et al.  New Approach to Molecular Docking and Its Application to Virtual Screening of Chemical Databases , 2000, J. Chem. Inf. Comput. Sci..

[39]  Charles L. Brooks,et al.  Assessing energy functions for flexible docking , 1998 .

[40]  S. Kim,et al.  "Soft docking": matching of molecular surface cubes. , 1991, Journal of molecular biology.

[41]  B. X. Carlson,et al.  A single glycine residue at the entrance to the first membrane-spanning domain of the gamma-aminobutyric acid type A receptor beta(2) subunit affects allosteric sensitivity to GABA and anesthetics. , 2000, Molecular pharmacology.

[42]  A. Treasurywala,et al.  A genetic algorithm based method for docking flexible molecules , 1994 .

[43]  Ray Luo,et al.  Ligand-receptor docking with the Mining Minima optimizer , 2001, J. Comput. Aided Mol. Des..

[44]  R. Nussinov,et al.  A geometry-based suite of molecular docking processes. , 1995, Journal of molecular biology.

[45]  Youngshang Pak,et al.  Application of a Molecular Dynamics Simulation Method with a Generalized Effective Potential to the Flexible Molecular Docking Problems , 2000 .

[46]  D. Bailey,et al.  High-throughput chemistry and structure-based design: survival of the smartest. , 2001, Drug discovery today.

[47]  E. Shakhnovich,et al.  SMoG: de Novo Design Method Based on Simple, Fast, and Accurate Free Energy Estimates. 1. Methodology and Supporting Evidence , 1996 .

[48]  Eugene I. Shakhnovich,et al.  SMOG : DE NOVO DESIGN METHOD BASED ON SIMPLE, FAST, AND ACCURATE FREE ENERGY ESTIMATES. 2. CASE STUDIES IN MOLECULAR DESIGN , 1997 .

[49]  D. E. Clark,et al.  Flexible docking using tabu search and an empirical estimate of binding affinity , 1998, Proteins.

[50]  A. di Nola,et al.  Docking of flexible ligands to flexible receptors in solution by molecular dynamics simulation , 1999, Proteins.

[51]  Thomas Lengauer,et al.  Evaluation of the FLEXX incremental construction algorithm for protein–ligand docking , 1999, Proteins.

[52]  C. Sotriffer,et al.  Automated docking of ligands to antibodies: methods and applications. , 2000, Methods.

[53]  Gennady M Verkhivker,et al.  Computer simulations of ligand–protein binding with ensembles of protein conformations: A Monte Carlo study of HIV‐1 protease binding energy landscapes , 1999 .

[54]  Luhua Lai,et al.  Further development and validation of empirical scoring functions for structure-based binding affinity prediction , 2002, J. Comput. Aided Mol. Des..

[55]  D. E. Clark,et al.  Current Issues in De Novo Molecular Design , 2007 .

[56]  Brian B. Goldman,et al.  QSD quadratic shape descriptors. 2. Molecular docking using quadratic shape descriptors (QSDock) , 2000, Proteins.

[57]  Randy J. Read,et al.  A multiple‐start Monte Carlo docking method , 1992 .

[58]  M Stahl,et al.  Structure-based library design: molecular modelling merges with combinatorial chemistry. , 2000, Current opinion in chemical biology.

[59]  B. Shoichet,et al.  Flexible ligand docking using conformational ensembles , 1998, Protein science : a publication of the Protein Society.

[60]  R Abagyan,et al.  Rational discovery of novel nuclear hormone receptor antagonists , 2000, Proc. Natl. Acad. Sci. USA.

[61]  I. Kuntz,et al.  Structure-Based Molecular Design , 1994 .

[62]  Daniel A. Gschwend,et al.  Orientational sampling and rigid‐body minimization in molecular docking , 1993, Proteins.

[63]  H. Carlson Protein flexibility and drug design: how to hit a moving target. , 2002, Current opinion in chemical biology.

[64]  C L Verlinde,et al.  The role of waters in docking strategies with incremental flexibility for carbohydrate derivatives: heat-labile enterotoxin, a multivalent test case. , 1999, Journal of medicinal chemistry.

[65]  Pieter F. W. Stouten,et al.  A molecular mechanics/grid method for evaluation of ligand–receptor interactions , 1995, J. Comput. Chem..

[66]  M J Sternberg,et al.  Predictive docking of protein-protein and protein-DNA complexes. , 1998, Current opinion in structural biology.

[67]  Malin M. Young,et al.  Design, docking, and evaluation of multiple libraries against multiple targets , 2001, Proteins.

[68]  R E Hubbard,et al.  Relating structure to thermodynamics: The crystal structures and binding affinity of eight OppA‐peptide complexes , 1999, Protein science : a publication of the Protein Society.

[69]  Irwin D. Kuntz,et al.  Automated flexible ligand docking method and its application for database search , 1997 .

[70]  Daniel A. Gschwend,et al.  Molecular docking towards drug discovery , 1996, Journal of molecular recognition : JMR.

[71]  Garland R. Marshall,et al.  VALIDATE: A New Method for the Receptor-Based Prediction of Binding Affinities of Novel Ligands , 1996 .

[72]  D J Diller,et al.  High throughput docking for library design and library prioritization , 2001, Proteins.

[73]  Kevin P. Clark,et al.  Flexible ligand docking without parameter adjustment across four ligand–receptor complexes , 1995, J. Comput. Chem..

[74]  David E. Clark,et al.  PRO_SELECT: Combining structure-based drug design and combinatorial chemistry for rapid lead discovery. 1. Technology , 1997, J. Comput. Aided Mol. Des..

[75]  Thomas Lengauer,et al.  Placement of medium-sized molecular fragments into active sites of proteins , 1996, J. Comput. Aided Mol. Des..

[76]  Todd J. A. Ewing,et al.  DOCK 4.0: Search strategies for automated molecular docking of flexible molecule databases , 2001, J. Comput. Aided Mol. Des..

[77]  P. Kollman,et al.  A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules , 1995 .

[78]  W. Punch,et al.  Predicting conserved water-mediated and polar ligand interactions in proteins using a K-nearest-neighbors genetic algorithm. , 1997, Journal of molecular biology.

[79]  I D Kuntz,et al.  CombiDOCK: Structure-based combinatorial docking and library design , 1998, Journal of computer-aided molecular design.

[80]  W. F. V. Gunsteren,et al.  Moleküldynamik‐Computersimulationen; Methodik, Anwendungen und Perspektiven in der Chemie , 1990 .

[81]  Garland R. Marshall,et al.  Receptor-based prediction of binding affinities , 2002 .

[82]  Y. Martin,et al.  A general and fast scoring function for protein-ligand interactions: a simplified potential approach. , 1999, Journal of medicinal chemistry.

[83]  J. Scott Dixon,et al.  A shape- and chemistry-based docking method and its use in the design of HIV-1 protease inhibitors , 1994, J. Comput. Aided Mol. Des..

[84]  Tingjun Hou,et al.  Automated docking of peptides and proteins by using a genetic algorithm combined with a tabu search. , 1999, Protein engineering.

[85]  U. Singh,et al.  A NEW FORCE FIELD FOR MOLECULAR MECHANICAL SIMULATION OF NUCLEIC ACIDS AND PROTEINS , 1984 .

[86]  D. Rognan,et al.  Protein-based virtual screening of chemical databases. 1. Evaluation of different docking/scoring combinations. , 2000, Journal of medicinal chemistry.

[87]  G. Klebe,et al.  Ansätze zur Beschreibung und Vorhersage der Bindungsaffinität niedermolekularer Liganden an makromolekulare Rezeptoren , 2002 .

[88]  G Vriend,et al.  CASP2 molecular docking predictions with the LIGIN software , 1997, Proteins.

[89]  J. Andrew McCammon,et al.  HIV-1 Integrase Inhibitor Interactions at the Active Site: Prediction of Binding Modes Unaffected by Crystal Packing , 2000 .

[90]  Dudley H. Williams,et al.  Estimating binding constants – The hydrophobic effect and cooperativity , 1999 .

[91]  T. P. Straatsma,et al.  Free Energy by Molecular Simulation , 2007 .

[92]  David E. Clark,et al.  A comparison of heuristic search algorithms for molecular docking , 1997, J. Comput. Aided Mol. Des..

[93]  G. V. Paolini,et al.  Empirical scoring functions: I. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes , 1997, J. Comput. Aided Mol. Des..

[94]  David E. Clark,et al.  Evolutionary algorithms in computer-aided molecular design , 1996, J. Comput. Aided Mol. Des..

[95]  D. Goodsell,et al.  Automated docking to multiple target structures: Incorporation of protein mobility and structural water heterogeneity in AutoDock , 2002, Proteins.

[96]  G Klebe,et al.  Docking ligands onto binding site representations derived from proteins built by homology modelling. , 2001, Journal of molecular biology.

[97]  Atul Agarwal,et al.  Free Energy Calculations: Use and Limitations in Predicting Ligand Binding Affinities , 2007 .

[98]  D. Goodsell,et al.  Automated docking of substrates to proteins by simulated annealing , 1990, Proteins.

[99]  Thomas Lengauer,et al.  Multiple automatic base selection: Protein–ligand docking based on incremental construction without manual intervention , 1997, J. Comput. Aided Mol. Des..

[100]  M. Karplus,et al.  CHARMM: A program for macromolecular energy, minimization, and dynamics calculations , 1983 .

[101]  Ingo Muegge,et al.  Evaluation of docking/scoring approaches: A comparative study based on MMP3 inhibitors , 2000, J. Comput. Aided Mol. Des..

[102]  D. Kostrewa,et al.  Novel inhibitors of DNA gyrase: 3D structure based biased needle screening, hit validation by biophysical methods, and 3D guided optimization. A promising alternative to random screening. , 2000, Journal of medicinal chemistry.

[103]  A. N. Jain,et al.  Hammerhead: fast, fully automated docking of flexible ligands to protein binding sites. , 1996, Chemistry & biology.

[104]  Robert P. Sheridan,et al.  FLOG: A system to select ‘quasi-flexible’ ligands complementary to a receptor of known three-dimensional structure , 1994, J. Comput. Aided Mol. Des..

[105]  Gerhard Klebe,et al.  Relibase: design and development of a database for comprehensive analysis of protein-ligand interactions. , 2003, Journal of molecular biology.

[106]  J Moult,et al.  Docking by least-squares fitting of molecular surface patterns. , 1992, Journal of molecular biology.

[107]  C L Brooks,et al.  Methodology for protein–ligand binding studies: Application to a model for drug resistance, the HIV/FIV protease system , 1999, Proteins.

[108]  Hans Böhm,et al.  Was läßt sich aus der molekularen Erkennung in Protein‐Ligand‐Komplexen für das Design neuer Wirkstoffe lernen? , 1996 .

[109]  Gisbert Schneider,et al.  Virtual screening and fast automated docking methods. , 2002, Drug discovery today.

[110]  J. S. Dixon,et al.  Evaluation of the CASP2 docking section , 1997, Proteins.

[111]  G. Klebe,et al.  Statistical potentials and scoring functions applied to protein-ligand binding. , 2001, Current opinion in structural biology.

[112]  R J Read,et al.  Critical evaluation of the research docking program for the CASP2 challenge , 1997, Proteins.

[113]  Janet M. Thornton,et al.  Evaluation of a knowledge‐based potential of mean force for scoring docked protein–ligand complexes , 2001, J. Comput. Chem..

[114]  Harold A. Scheraga,et al.  Prodock: Software package for protein modeling and docking , 1999 .

[115]  Gerhard Klebe,et al.  Methodological developments and strategies for a fast flexible superposition of drug-size molecules , 1999, J. Comput. Aided Mol. Des..

[116]  J J Baldwin,et al.  Application of the three-dimensional structures of protein target molecules in structure-based drug design. , 1994, Journal of medicinal chemistry.

[117]  Matthias Rarey,et al.  Small Molecule Docking and Scoring , 2001 .

[118]  David S. Goodsell,et al.  Distributed automated docking of flexible ligands to proteins: Parallel applications of AutoDock 2.4 , 1996, J. Comput. Aided Mol. Des..

[119]  Fredy Sussman,et al.  Solvent accessibility as a predictive tool for the free energy of inhibitor binding to the HIV‐1 protease , 1995, Protein science : a publication of the Protein Society.

[120]  I. Kuntz,et al.  Automated docking with grid‐based energy evaluation , 1992 .

[121]  J A McCammon,et al.  Accommodating protein flexibility in computational drug design. , 2000, Molecular pharmacology.

[122]  T Lengauer,et al.  CASP2 experiences with docking flexible ligands using FLEXX , 1997, Proteins.

[123]  G. Klebe,et al.  Knowledge-based scoring function to predict protein-ligand interactions. , 2000, Journal of molecular biology.

[124]  P Burkhard,et al.  An example of a protein ligand found by database mining: description of the docking method and its verification by a 2.3 A X-ray structure of a thrombin-ligand complex. , 1998, Journal of molecular biology.

[125]  Stefano Moro,et al.  Molecular Modeling Studies of Human A3 Adenosine Antagonists: Structural Homology and Receptor Docking , 1998, J. Chem. Inf. Comput. Sci..

[126]  H J Berendsen,et al.  Molecular dynamics simulation of the docking of substrates to proteins , 1994, Proteins.

[127]  I. Kuntz,et al.  Characterization of receptors with a new negative image: Use in molecular docking and lead optimization , 1998, Proteins.

[128]  Gennady M Verkhivker,et al.  Molecular recognition of the inhibitor AG-1343 by HIV-1 protease: conformationally flexible docking by evolutionary programming. , 1995, Chemistry & biology.

[129]  Michael Thormann,et al.  Massive docking of flexible ligands using environmental niches in parallelized genetic algorithms , 2001, J. Comput. Chem..

[130]  Hans-Joachim Böhm,et al.  Combinatorial docking and combinatorial chemistry: Design of potent non-peptide thrombin inhibitors , 1999, J. Comput. Aided Mol. Des..

[131]  G. Klebe,et al.  Approaches to the description and prediction of the binding affinity of small-molecule ligands to macromolecular receptors. , 2002, Angewandte Chemie.

[132]  Gerhard Klebe,et al.  A fast and efficient method to generate biologically relevant conformations , 1994, J. Comput. Aided Mol. Des..

[133]  A. Olson,et al.  Modelling of Factor Xa‐inhibitor complexes: a computational flexible docking approach , 1999, Proteins.

[134]  J. Tainer,et al.  Screening a peptidyl database for potential ligands to proteins with side‐chain flexibility , 1998, Proteins.

[135]  Ajay N. Jain Scoring noncovalent protein-ligand interactions: A continuous differentiable function tuned to compute binding affinities , 1996, J. Comput. Aided Mol. Des..

[136]  Hans-Joachim Böhm,et al.  The computer program LUDI: A new method for the de novo design of enzyme inhibitors , 1992, J. Comput. Aided Mol. Des..

[137]  M. Murcko Recent Advances in Ligand Design Methods , 2007 .

[138]  M. Sternberg,et al.  Prediction of protein-protein interactions by docking methods. , 2002, Current opinion in structural biology.

[139]  H. Tsuzuki,et al.  Homology modeling of gelatinase catalytic domains and docking simulations of novel sulfonamide inhibitors. , 1999, Journal of medicinal chemistry.

[140]  Thomas Lengauer,et al.  A fast flexible docking method using an incremental construction algorithm. , 1996, Journal of molecular biology.

[141]  R. Jernigan,et al.  Estimation of effective interresidue contact energies from protein crystal structures: quasi-chemical approximation , 1985 .

[142]  D. Rognan,et al.  Predicting binding affinities of protein ligands from three-dimensional models: application to peptide binding to class I major histocompatibility proteins. , 1999, Journal of medicinal chemistry.

[143]  I. Kuntz,et al.  Ligand solvation in molecular docking , 1999, Proteins.

[144]  C. DeLisi,et al.  Determination of atomic desolvation energies from the structures of crystallized proteins. , 1997, Journal of molecular biology.

[145]  Ruth Nussinov,et al.  Principles of docking: An overview of search algorithms and a guide to scoring functions , 2002, Proteins.

[146]  Hans-Joachim Böhm,et al.  LUDI: rule-based automatic design of new substituents for enzyme inhibitor leads , 1992, J. Comput. Aided Mol. Des..

[147]  Gennady M Verkhivker,et al.  Predicting structural effects in HIV‐1 protease mutant complexes with flexible ligand docking and protein side‐chain optimization , 1998, Proteins.

[148]  M. Karplus,et al.  Functionality maps of binding sites: A multiple copy simultaneous search method , 1991, Proteins.

[149]  M Rarey,et al.  Detailed analysis of scoring functions for virtual screening. , 2001, Journal of medicinal chemistry.

[150]  Yuan-Ping Pang,et al.  EUDOC: a computer program for identification of drug interaction sites in macromolecules and drug leads from chemical databases , 2001, J. Comput. Chem..

[151]  Andreas Plückthun,et al.  Docking small ligands in flexible binding sites , 1998 .

[152]  M. Karplus,et al.  Multiple copy simultaneous search and construction of ligands in binding sites: application to inhibitors of HIV-1 aspartic proteinase. , 1993, Journal of medicinal chemistry.

[153]  Hans-Joachim Böhm,et al.  Prediction of binding constants of protein ligands: A fast method for the prioritization of hits obtained from de novo design or 3D database search programs , 1998, J. Comput. Aided Mol. Des..

[154]  T Lengauer,et al.  The particle concept: placing discrete water molecules during protein‐ligand docking predictions , 1999, Proteins.

[155]  Andrew M. Davis,et al.  Die Bedeutung der Balance von Wasserstoffbrückenbindungen und hydrophoben Wechselwirkungen im Wirkstoff‐Rezeptor‐Komplex , 1999 .

[156]  Colin McMartin,et al.  QXP: Powerful, rapid computer algorithms for structure-based drug design , 1997, J. Comput. Aided Mol. Des..

[157]  Jeremy R. H. Tame,et al.  Scoring functions: A view from the bench , 1999, J. Comput. Aided Mol. Des..

[158]  J. Cherfils,et al.  Molecular docking programs successfully predict the binding of a β-lactamase inhibitory protein to TEM-1 β-lactamase , 1996, Nature Structural Biology.

[159]  Jonas Boström,et al.  Conformational energy penalties of protein-bound ligands , 1998, J. Comput. Aided Mol. Des..

[160]  I. Kuntz,et al.  Molecular docking to ensembles of protein structures. , 1997, Journal of molecular biology.

[161]  Janet M. Thornton,et al.  BLEEP—potential of mean force describing protein–ligand interactions: I. Generating potential , 1999 .

[162]  I. Kuntz,et al.  Docking flexible ligands to macromolecular receptors by molecular shape. , 1986, Journal of medicinal chemistry.

[163]  L. Kuhn,et al.  Virtual screening with solvation and ligand-induced complementarity , 2000 .

[164]  R M Stroud,et al.  Approaches to solving the rigid receptor problem by identifying a minimal set of flexible residues during ligand docking. , 2001, Chemistry & biology.

[165]  Ajay N. Jain,et al.  Automatic identification and representation of protein binding sites for molecular docking , 1997, Protein science : a publication of the Protein Society.

[166]  Jonathan W. Essex,et al.  A review of protein-small molecule docking methods , 2002, J. Comput. Aided Mol. Des..

[167]  Jonathan D. Hirst,et al.  Assessing search strategies for flexible docking , 1998 .

[168]  R. Glen,et al.  Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation. , 1995, Journal of molecular biology.

[169]  J. Ladbury Just add water! The effect of water on the specificity of protein-ligand binding sites and its potential application to drug design. , 1996, Chemistry & biology.

[170]  J. Scott Dixon,et al.  Flexible ligand docking using a genetic algorithm , 1995, J. Comput. Aided Mol. Des..

[171]  M. Gerstein,et al.  A database of macromolecular motions. , 1998, Nucleic acids research.

[172]  B. Rode,et al.  Ligand binding by antibody IgE Lb4: assessment of binding site preferences using microcalorimetry, docking, and free energy simulations. , 1999, Biophysical journal.

[173]  Ruben Abagyan,et al.  ICM—A new method for protein modeling and design: Applications to docking and structure prediction from the distorted native conformation , 1994, J. Comput. Chem..

[174]  Rebecca C. Wade,et al.  Protein‐Protein Docking , 2001 .

[175]  I D Kuntz,et al.  Predicting the structure of protein complexes: a step in the right direction. , 1996, Chemistry & biology.

[176]  G. Klebe,et al.  Identification and mapping of small-molecule binding sites in proteins: computational tools for structure-based drug design. , 2002, Farmaco.