Chapter 18 – Microstructure Informatics

Accelerated design and development of new advanced materials with improved performance characteristics and their successful insertion in engineering practice are largely hindered by the lack of a rigorous mathematical framework for the robust generation of microstructure informatics relevant to the specific application. In this chapter, we describe a set of novel data-driven, computationally efficient protocols that are capable of accelerating significantly the process of building the necessary microstructure informatics for a targeted application. Specific applications in establishing processing–structure–property linkages are discussed as representative examples of how data science can potentially transform the current practices in the materials design and development arena.

[1]  Surya R. Kalidindi,et al.  Microstructure informatics using higher-order statistics and efficient data-mining protocols , 2011 .

[2]  David L. McDowell,et al.  Simulated microstructure-sensitive extreme value probabilities for high cycle fatigue of duplex Ti–6Al–4V , 2011 .

[3]  Farrokh Mistree,et al.  Plasticity-Related Microstructure-Property Relations for Materials Design , 2007 .

[4]  Michael K Miller,et al.  Invited review article: Atom probe tomography. , 2007, The Review of scientific instruments.

[5]  Surya R. Kalidindi,et al.  Thermo-Elastic Localization Relationships for Multi-Phase Composites , 2010 .

[6]  Jan Novák,et al.  Accelerating a FFT-based solver for numerical homogenization of periodic media by conjugate gradients , 2010, J. Comput. Phys..

[7]  Surya R. Kalidindi,et al.  Building texture evolution networks for deformation processing of polycrystalline fcc metals using spectral approaches: Applications to process design for targeted performance , 2010 .

[8]  Surya R. Kalidindi,et al.  A new framework for computationally efficient structure–structure evolution linkages to facilitate high-fidelity scale bridging in multi-scale materials models , 2011 .

[9]  Luc Dormieux,et al.  FFT-based methods for the mechanics of composites: A general variational framework , 2010 .

[10]  Jagan M. Padbidri,et al.  Minimal kinematic boundary conditions for simulations of disordered microstructures , 2005 .

[11]  S. Torquato,et al.  Chord-length distribution function for two-phase random media. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[12]  J. Michel,et al.  Effective properties of composite materials with periodic microstructure : a computational approach , 1999 .

[13]  R. Lebensohn N-site modeling of a 3D viscoplastic polycrystal using Fast Fourier Transform , 2001 .

[14]  D. McDowell,et al.  Microstructure-sensitive computational modeling of fatigue crack formation , 2010 .

[15]  Steven E. Olson,et al.  A fracture mechanics methodology assessment for fretting fatigue , 2003 .

[16]  Surya R. Kalidindi,et al.  Formulation and calibration of higher-order elastic localization relationships using the MKS approach , 2011 .

[17]  Farrokh Mistree,et al.  An Inductive Design Exploration Method for Robust Multiscale Materials Design , 2008 .

[18]  Su Hao,et al.  A hierarchical multi-physics model for design of high toughness steels , 2003 .

[19]  Surya R. Kalidindi,et al.  Multi-scale modeling of the elastic response of a structural component made from a composite material using the materials knowledge system , 2012 .

[20]  Farrokh Mistree,et al.  Integrated Design of Multiscale, Multifunctional Materials and Products , 2009 .

[21]  Surya R. Kalidindi,et al.  A Novel Framework for Building Materials Knowledge Systems , 2010 .

[22]  A. Rollett,et al.  Modeling the viscoplastic micromechanical response of two-phase materials using Fast Fourier Transforms , 2011 .

[23]  A. Fazekas,et al.  A new methodology based on X-ray micro-tomography to estimate stress concentrations around inclusions in high strength steels , 2009 .

[24]  D. Fullwood,et al.  Gradient-based microstructure reconstructions from distributions using fast Fourier transforms , 2008 .

[25]  Yuksel C. Yabansu,et al.  Understanding and visualizing microstructure and microstructure variance as a stochastic process , 2011 .

[26]  C. Shen,et al.  Phase-field modeling of bimodal particle size distributions during continuous cooling , 2003 .

[27]  G. Spanos,et al.  Three-dimensional analysis of grain topology and interface curvature in a β-titanium alloy , 2010 .

[28]  G. B. Olson,et al.  Computational Design of Hierarchically Structured Materials , 1997 .

[29]  S. Kalidindi,et al.  Finite approximations to the second-order properties closure in single phase polycrystals , 2005 .

[30]  A. Gokhale,et al.  Constraints on microstructural two-point correlation functions , 2005 .

[31]  Yunzhi Wang,et al.  Systematic Approach to Microstructure Design of Ni-Base Alloys Using Classical Nucleation and Growth Relations Coupled with Phase Field Modeling , 2008 .

[32]  D. Enke,et al.  Pore Size Distribution and Chord Length Distribution of Porous VYCOR Glass (PVG) , 2002 .

[33]  Philip Eisenlohr,et al.  An elasto-viscoplastic formulation based on fast Fourier transforms for the prediction of micromechanical fields in polycrystalline materials , 2012 .

[34]  David T. Fullwood,et al.  Microstructure Sensitive Design for Performance Optimization , 2012 .

[35]  William Fuller Brown,et al.  Solid Mixture Permittivities , 1955 .

[36]  Brent L. Adams,et al.  The mesostructure—properties linkage in polycrystals , 1998 .

[37]  E. Kröner Bounds for effective elastic moduli of disordered materials , 1977 .

[38]  Hilfer,et al.  Stochastic reconstruction of sandstones , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[39]  Michael A. Groeber,et al.  Grain Level Dwell Fatigue Crack Nucleation Model for Ti Alloys Using Crystal Plasticity Finite Element Analysis , 2009 .

[40]  David T. Fullwood,et al.  Elastic properties closures using second-order homogenization theories: Case studies in composites of two isotropic constituents , 2006 .

[41]  Teddy Craciunescu,et al.  3D X-ray micro-tomography for modeling of NB3SN multifilamentary superconducting wires , 2007 .

[42]  Ilke Arslan,et al.  Towards better 3-D reconstructions by combining electron tomography and atom-probe tomography. , 2008, Ultramicroscopy.

[43]  Brian Puchala,et al.  Collecting and analyzing microstructures in three dimensions: A fully automated approach , 2003 .

[44]  D. Fullwood,et al.  Microstructure reconstructions from 2-point statistics using phase-recovery algorithms , 2008 .

[45]  J. Spowart Automated serial sectioning for 3-D analysis of microstructures , 2006 .

[46]  Hervé Moulinec,et al.  A numerical method for computing the overall response of nonlinear composites with complex microstructure , 1998, ArXiv.

[47]  S. Torquato,et al.  Reconstructing random media. II. Three-dimensional media from two-dimensional cuts , 1998 .

[48]  D. Fullwood,et al.  Optimized structure based representative volume element sets reflecting the ensemble-averaged 2-point statistics , 2010 .

[49]  Abhishek Bhattacharyya,et al.  Detailed analyses of grain–scale plastic deformation in columnar polycrystalline aluminium using orientation image mapping and crystal plasticity models , 2004, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[50]  Farrokh Mistree,et al.  An inductive design exploration method for hierarchical systems design under uncertainty , 2008 .

[51]  S. Kalidindi,et al.  Applications of the Phase-Coded Generalized Hough Transform to Feature Detection, Analysis, and Segmentation of Digital Microstructures , 2009 .

[52]  David L. McDowell,et al.  A second gradient theoretical framework for hierarchical multiscale modeling of materials , 2010 .

[53]  G. Milton The Theory of Composites , 2002 .

[54]  Brent L. Adams,et al.  Bounding elastic constants of an orthotropic polycrystal using measurements of the microstructure , 1996 .

[55]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[56]  A. Gokhale,et al.  Image based computations of lineal path probability distributions for microstructure representation , 2008 .

[57]  Carelyn E. Campbell,et al.  Systems design of high performance stainless steels II. Prototype characterization , 2000 .

[58]  G. B. Olson,et al.  Systems design of high performance stainless steels I. Conceptual and computational design , 2000 .

[59]  D. Fullwood,et al.  Delineation of the space of 2-point correlations in a composite material system , 2008 .

[60]  Surya R. Kalidindi,et al.  Multi-scale modeling of elastic response of three-dimensional voxel-based microstructure datasets using novel DFT-based knowledge systems , 2010 .

[61]  S. Kalidindi,et al.  Estimating the response of polycrystalline materials using sets of weighted statistical volume elements , 2012 .

[62]  J. Buffière,et al.  Three-dimensional study of a fretting crack using synchrotron X-ray micro-tomography , 2007 .