Satellite phage TLCϕ enables toxigenic conversion by CTX phage through dif site alteration

[1]  B. Das,et al.  Molecular keys of the tropism of integration of the cholera toxin phage , 2010, Proceedings of the National Academy of Sciences.

[2]  D. Cameron,et al.  A defined transposon mutant library and its use in identifying motility genes in Vibrio cholerae , 2008, Proceedings of the National Academy of Sciences.

[3]  D. Sherratt,et al.  The single-stranded genome of phage CTX is the form used for integration into the genome of Vibrio cholerae. , 2005, Molecular cell.

[4]  M. Waldor,et al.  Characterization of XerC‐ and XerD‐dependent CTX phage integration in Vibrio cholerae , 2004, Molecular microbiology.

[5]  Matthew K. Waldor,et al.  The CTXϕ Repressor RstR Binds DNA Cooperatively to Form Tetrameric Repressor-Operator Complexes* , 2004, Journal of Biological Chemistry.

[6]  D. Sack,et al.  CTXΦ-independent production of the RS1 satellite phage by Vibrio cholerae , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[7]  K. Yokoyama,et al.  Filamentous Bacteriophages of Vibrios Are Integrated into the dif-Like Site of the Host Chromosome , 2002, Journal of bacteriology.

[8]  M. Waldor,et al.  A satellite phage‐encoded antirepressor induces repressor aggregation and cholera toxin gene transfer , 2002, The EMBO journal.

[9]  M. Waldor,et al.  Filamentous phage integration requires the host recombinases XerC and XerD , 2002, Nature.

[10]  R. K. Nandi,et al.  RS1 Element of Vibrio cholerae Can Propagate Horizontally as a Filamentous Phage Exploiting the Morphogenesis Genes of CTXΦ , 2002, Infection and Immunity.

[11]  D. Sack,et al.  Diminished Diarrheal Response to Vibrio choleraeStrains Carrying the Replicative Form of the CTXΦ Genome instead of CTXΦ Lysogens in Adult Rabbits , 2001, Infection and Immunity.

[12]  S. Salzberg,et al.  DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae , 2000, Nature.

[13]  M. Waldor,et al.  CTXphi contains a hybrid genome derived from tandemly integrated elements. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[14]  S. Faruque,et al.  Epidemiology, Genetics, and Ecology of ToxigenicVibrio cholerae , 1998, Microbiology and Molecular Biology Reviews.

[15]  M. Ikema,et al.  A novel filamentous phage, fs-2, of Vibrio cholerae O139. , 1998, Microbiology.

[16]  M. Waldor,et al.  Replication and integration of a Vibrio cholerae cryptic plasmid linked to the CTX prophage , 1998, Molecular microbiology.

[17]  T. Hirayama,et al.  Characterization of filamentous phages of Vibrio cholerae O139 and O1. , 1997, FEMS microbiology letters.

[18]  M. Waldor,et al.  Regulation, replication, and integration functions of the Vibrio cholerae CTXφ are encoded by region RS2 , 1997, Molecular microbiology.

[19]  Matthew K. Waldor,et al.  Lysogenic Conversion by a Filamentous Phage Encoding Cholera Toxin , 1996, Science.

[20]  D. Sherratt,et al.  Two related recombinases are required for site-specific recombination at dif and cer in E. coli K12 , 1993, Cell.