Discrimination of cortical laminae using MEG

Typically MEG source reconstruction is used to estimate the distribution of current flow on a single anatomically derived cortical surface model. In this study we use two such models representing superficial and deep cortical laminae. We establish how well we can discriminate between these two different cortical layer models based on the same MEG data in the presence of different levels of co-registration noise, Signal-to-Noise Ratio (SNR) and cortical patch size. We demonstrate that it is possible to make a distinction between superficial and deep cortical laminae for levels of co-registration noise of less than 2 mm translation and 2° rotation at SNR > 11 dB. We also show that an incorrect estimate of cortical patch size will tend to bias layer estimates. We then use a 3D printed head-cast (Troebinger et al., 2014) to achieve comparable levels of co-registration noise, in an auditory evoked response paradigm, and show that it is possible to discriminate between these cortical layer models in real data.

[1]  Y. Okada,et al.  Physiological origins of evoked magnetic fields and extracellular field potentials produced by guinea‐pig CA3 hippocampal slices , 2002, The Journal of physiology.

[2]  M. Hämäläinen Magnetoencephalography: A tool for functional brain imaging , 2005, Brain Topography.

[3]  Benoit Cottereau,et al.  Multiresolution imaging of MEG cortical sources using an explicit piecewise model , 2007, NeuroImage.

[4]  S. Baillet,et al.  Localization of realistic cortical activity in MEG using current multipoles , 2004, NeuroImage.

[5]  Antoine Lutti,et al.  High precision anatomy for MEG , 2014, NeuroImage.

[6]  Karl J. Friston,et al.  Diffusion-based spatial priors for imaging , 2007, NeuroImage.

[7]  Bruce Fischl,et al.  FreeSurfer , 2012, NeuroImage.

[8]  Anders M. Dale,et al.  Cortical Surface-Based Analysis I. Segmentation and Surface Reconstruction , 1999, NeuroImage.

[9]  J. Syka,et al.  The response properties of neurons in different fields of the auditory cortex in the rat , 2013, Hearing Research.

[10]  G. R. Barnes,et al.  A Quantitative Assessment of the Sensitivity of Whole-Head MEG to Activity in the Adult Human Cortex , 2002, NeuroImage.

[11]  G. Nolte The magnetic lead field theorem in the quasi-static approximation and its use for magnetoencephalography forward calculation in realistic volume conductors. , 2003, Physics in medicine and biology.

[12]  Karl J. Friston,et al.  Bayesian estimation of synaptic physiology from the spectral responses of neural masses , 2008, NeuroImage.

[13]  P. Dechent,et al.  Quantitative FLASH MRI at 3T using a rational approximation of the Ernst equation , 2008, Magnetic resonance in medicine.

[14]  Jaime de la Rocha,et al.  How do neurons work together? Lessons from auditory cortex , 2011, Hearing Research.

[15]  Suresh D. Muthukumaraswamy,et al.  Temporal dynamics of primary motor cortex gamma oscillation amplitude and piper corticomuscular coherence changes during motor control , 2011, Experimental Brain Research.

[16]  Takeshi Ogawa,et al.  Large-Scale Heterogeneous Representation of Sound Attributes in Rat Primary Auditory Cortex: From Unit Activity to Population Dynamics , 2011, The Journal of Neuroscience.

[17]  Jens Haueisen,et al.  Comparison of three-shell and simplified volume conductor models in magnetoencephalography , 2014, NeuroImage.

[18]  D Matthaei,et al.  Rapid three-dimensional MR imaging using the FLASH technique. , 1986, Journal of computer assisted tomography.

[19]  T. Harkany,et al.  Pyramidal cell communication within local networks in layer 2/3 of rat neocortex , 2003, The Journal of physiology.

[20]  Thomas E. Nichols,et al.  Nonparametric permutation tests for functional neuroimaging: A primer with examples , 2002, Human brain mapping.

[21]  Suresh D Muthukumaraswamy,et al.  Functional properties of human primary motor cortex gamma oscillations. , 2010, Journal of neurophysiology.

[22]  Karl J. Friston,et al.  Bayesian model selection for group studies , 2009, NeuroImage.

[23]  K D Singh,et al.  Evaluation of MRI-MEG/EEG co-registration strategies using Monte Carlo simulation. , 1997, Electroencephalography and clinical neurophysiology.

[24]  Karl J. Friston,et al.  Controlling false positive rates in mass-multivariate tests for electromagnetic responses , 2011, NeuroImage.

[25]  Karl J. Friston,et al.  Algorithmic procedures for Bayesian MEG/EEG source reconstruction in SPM , 2014, NeuroImage.

[26]  Hubert Preissl,et al.  Source Reconstruction Accuracy of MEG and EEG Bayesian Inversion Approaches , 2012, PloS one.

[27]  K. Harris,et al.  Laminar Structure of Spontaneous and Sensory-Evoked Population Activity in Auditory Cortex , 2009, Neuron.

[28]  Mitchell Steinschneider,et al.  Spectrotemporal analysis of evoked and induced electroencephalographic responses in primary auditory cortex (A1) of the awake monkey. , 2008, Cerebral cortex.

[29]  David P. Wipf,et al.  A unified Bayesian framework for MEG/EEG source imaging , 2009, NeuroImage.

[30]  Stephen D. Hall,et al.  A Multimodal Perspective on the Composition of Cortical Oscillations , 2013, Front. Hum. Neurosci..

[31]  Gareth R. Barnes,et al.  Random location of multiple sparse priors for solving the MEG/EEG inverse problem , 2012, 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[32]  Robert Oostenveld,et al.  Online and offline tools for head movement compensation in MEG , 2013, NeuroImage.

[33]  R. Kötter,et al.  Mapping functional connectivity in barrel-related columns reveals layer- and cell type-specific microcircuits , 2007, Brain Structure and Function.

[34]  Karl J. Friston,et al.  Comparing Families of Dynamic Causal Models , 2010, PLoS Comput. Biol..

[35]  Karl J. Friston,et al.  Canonical Microcircuits for Predictive Coding , 2012, Neuron.

[36]  S. Taulu,et al.  Spatiotemporal signal space separation method for rejecting nearby interference in MEG measurements , 2006, Physics in medicine and biology.

[37]  Karl J. Friston,et al.  Selecting forward models for MEG source-reconstruction using model-evidence , 2009, NeuroImage.

[38]  Dominique L. Pritchett,et al.  Neural Correlates of Tactile Detection: A Combined Magnetoencephalography and Biophysically Based Computational Modeling Study , 2007, The Journal of Neuroscience.

[39]  Karl J. Friston,et al.  Multiple sparse priors for the M/EEG inverse problem , 2008, NeuroImage.

[40]  William D. Penny,et al.  A general Bayesian treatment for MEG source reconstruction incorporating lead field uncertainty , 2012, NeuroImage.

[41]  Y. Okada,et al.  Contributions of principal neocortical neurons to magnetoencephalography and electroencephalography signals , 2006, The Journal of physiology.

[42]  Jean Gotman,et al.  Evaluation of EEG localization methods using realistic simulations of interictal spikes , 2006, NeuroImage.

[43]  F. Dick,et al.  In Vivo Functional and Myeloarchitectonic Mapping of Human Primary Auditory Areas , 2012, The Journal of Neuroscience.