Ophthalmic drug delivery systems—Recent advances

Eye-drops are the conventional dosage forms that account for 90% of currently accessible ophthalmic formulations. Despite the excellent acceptance by patients, one of the major problems encountered is rapid precorneal drug loss. To improve ocular drug bioavailability, there is a significant effort directed towards new drug delivery systems for ophthalmic administration. This chapter will focus on three representative areas of ophthalmic drug delivery systems: polymeric gels, colloidal systems, cyclodextrins and collagen shields. Hydrogels generally offer a moderate improvement of ocular drug bioavailability with the disadvantage of blurring of vision. In situ activated gel-forming systems are preferred as they can be delivered in drop form with sustained release properties. Colloidal systems including liposomes and nanoparticles have the convenience of a drop, which is able to maintain drug activity at its site of action and is suitable for poorly water-soluble drugs. Among the new therapeutic approaches in ophthalmology, cyclodextrins represent an alternative approach to increase the solubility of the drug in solution and to increase corneal permeability. Finally, collagen shields have been developed as a new continuous-delivery system for drugs that provide high and sustained levels of drugs to the cornea, despite a problem of tolerance. It seems that new tendency of research in ophthalmic drug delivery systems is directed towards a combination of several drug delivery technologies. There is a tendency to develop systems which not only prolong the contact time of the vehicle at the ocular surface, but which at the same time slow down the elimination of the drug. Combination of drug delivery systems could open a new directive for improving results and the therapeutic response of non-efficacious systems.

[1]  H. Thompson,et al.  Collagen-based drug delivery and artificial tears. , 1994, Journal of ocular pharmacology.

[2]  J. Kreuter,et al.  Evaluation of pilocarpine-loaded albumin particles as drug delivery systems for controlled delivery in the eye. I: In vitro and in vivo characterisation , 1994 .

[3]  M. Alonso,et al.  Comparative in vitro evaluation of several colloidal systems, nanoparticles, nanocapsules, and nanoemulsions, as ocular drug carriers. , 1996, Journal of pharmaceutical sciences.

[4]  Robert Gurny,et al.  Design and evaluation of controlled release systems for the eye , 1987 .

[5]  A. Nakajima,et al.  The effect on the cornea of alpha cyclodextrin vehicle for cyclosporin eye drops. , 1989, Transplantation proceedings.

[6]  V. H. Lee Review: New Directions in the Optimization of Ocular Drug Delivery , 1990 .

[7]  G. Peyman,et al.  Duration of therapeutic levels of intravitreally injected liposome-encapsulated clindamycin in the rabbit. , 1987, Canadian journal of ophthalmology. Journal canadien d'ophtalmologie.

[8]  H. Thompson,et al.  Collagen shield drug delivery: Therapeutic concentrations of tobramycin in the rabbit cornea and aqueous humor , 1988, Journal of cataract and refractive surgery.

[9]  T. Miyata,et al.  Soluble gentamicin ophthalmic inserts as a drug delivery system. , 1978, Archives of ophthalmology.

[10]  M. Osato,et al.  The solubility of antibiotic and corticosteroid combinations. , 1992, American journal of ophthalmology.

[11]  T. Maren,et al.  pH and drug ionization affects ocular pressure lowering of topical carbonic anhydrase inhibitors. , 1993, Investigative ophthalmology & visual science.

[12]  L. Romanelli,et al.  Ocular absorption and distribution of bendazac after topical administration to rabbits with different vehicles. , 1994, Life sciences.

[13]  F. Szoka,et al.  Pharmacokinetics of subconjunctival liposome-encapsulated gentamicin in normal rabbit eyes. , 1984, Investigative ophthalmology & visual science.

[14]  Hatem Fessi,et al.  Nanocapsule formation by interfacial polymer deposition following solvent displacement , 1989 .

[15]  T J Liesegang,et al.  Viscoelastic substances in ophthalmology. , 1990, Survey of ophthalmology.

[16]  J. Menezo,et al.  Penetration of 2% cyclosporin eyedrops into human aqueous humour. , 1989, The British journal of ophthalmology.

[17]  Susi Burgalassi,et al.  Evaluation of muco-adhesive properties and in vivo activity of ophthalmic vehicles based on hyaluronic acid , 1989 .

[18]  V. H. Lee,et al.  Improved ocular penetration of gentamicin by mucoadhesive polymer polycarbophil in the pigmented rabbit. , 1994, Investigative ophthalmology & visual science.

[19]  I. Hørven Acute conjunctivitis , 1993, Acta ophthalmologica.

[20]  R. Schoenwald,et al.  Relationship between steroid permeability across excised rabbit cornea and octanol-water partition coefficients. , 1978, Journal of pharmaceutical sciences.

[21]  J. Robinson,et al.  Bioadhesive and phase-change polymers for ocular drug delivery , 1995 .

[22]  A. Zimmer,et al.  Studies on the transport pathway of PBCA nanoparticles in ocular tissues. , 1991, Journal of microencapsulation.

[23]  J. Prydal,et al.  Precorneal residence times of sodium hyaluronate solutions studied by quantitative gamma scintigraphy , 1990, Eye.

[24]  R. Schoenwald,et al.  Corneal Penetration Behavior of β-Blocking Agents I: Physicochemical Factors , 1983 .

[25]  C. Koller,et al.  Propriétés et intérêt pharmaceutique des gels thermoréversibles à base de poloxamers et poloxamines , 1987 .

[26]  R. Gurny,et al.  Enhancement of the myotic response of rabbits with pilocarpine-loaded polybutylcyanoacrylate nanoparticles , 1986 .

[27]  R. Gurny,et al.  Topical semi-solid drug delivery: kinetics and tolerance of ophthalmic hydrogels , 1995 .

[28]  V. H. Lee,et al.  Nasal and conjunctival contributions to the systemic absorption of topical timolol in the pigmented rabbit: implications in the design of strategies to maximize the ratio of ocular to systemic absorption. , 1987, Journal of ocular pharmacology.

[29]  R. Allen,et al.  A one-year multicenter clinical trial of pilocarpine gel. , 1984, American journal of ophthalmology.

[30]  M. Blumenthal,et al.  A clinical trial with Piloplex--a new long-acting pilocarpine compound: preliminary report. , 1979, Annals of ophthalmology.

[31]  Sandeep Kumar,et al.  In situ-forming gels for ophthalmic drug delivery. , 1994, Journal of ocular pharmacology.

[32]  J. Greaves,et al.  Polymers and the precorneal tear film , 1992 .

[33]  E. Topp,et al.  Gellan-based systems for ophthalmic sustained delivery of methylprednisolone , 1993 .

[34]  J. Pastor,et al.  Reduction of cardiovascular side effects associated with ocular administration of metipranolol by inclusion in polymeric nanocapsules. , 1992, Journal of ocular pharmacology.

[35]  T. Maren,et al.  Ocular pharmacology of sulfonamides: the cornea as barrier and depot. , 1985, Current eye research.

[36]  J. Kreuter,et al.  In vitro studies of poly(methyl methacrylate) adjuvants. , 1976, Journal of pharmaceutical sciences.

[37]  E. Topp,et al.  Microspheres of hyaluronic acid esters—Fabrication methods and in vitro hydrocortisone release , 1990 .

[38]  T. F. Patton,et al.  Disposition of timolol and inulin in the rabbit eye following corneal versus non-corneal absorption , 1987 .

[39]  U. Pleyer,et al.  Prolongation of corneal allograft survival with liposome-encapsulated cyclosporine in the rat eye. , 1993, Ophthalmology.

[40]  U. Pleyer,et al.  Ocular absorption of cyclosporine A from liposomes incorporated into collagen shields. , 1994, Current eye research.

[41]  J. Lang Ocular drug delivery conventional ocular formulations , 1995 .

[42]  R. Gurny,et al.  Ocular therapy with nanoparticulate systems for controlled drug delivery , 1985 .

[43]  E. Stefánsson,et al.  Dexamethasone-cyclodextrin-polymer co-complexes in aqueous eye drops. Aqueous humor pharmacokinetics in humans. , 1996, Investigative ophthalmology & visual science.

[44]  A. Urtti,et al.  Methylprednisolone esters of hyaluronic acid in ophthalmic drug delivery: in vitro and in vivo release studies , 1992 .

[45]  A. Urtti,et al.  Modified β‐Cyclodextrin (SBE7‐β‐CyD) with Viscous Vehicle Improves the Ocular Delivery and Tolerability of Pilocarpine Prodrug in Rabbits , 1996 .

[46]  B. Müller,et al.  In vitro corneal permeability of diclofenac sodium in formulations containing cyclodextrins compared to the commercial product voltaren ophtha. , 1994, Journal of pharmaceutical sciences.

[47]  J. Robinson,et al.  Physico-chemical properties of water insoluble polymers important to mucin/epithelial adhesion☆ , 1985 .

[48]  J. Hadgraft,et al.  Drug release from Pluronic F-127 gels , 1986 .

[49]  R. W. Wood,et al.  Ocular drug delivery of progesterone using nanoparticles. , 1986, Journal of microencapsulation.

[50]  N. Peppas,et al.  BIOADHESIVE ANALYSIS OF CONTROLLED-RELEASE SYSTEMS. I. FRACTURE AND INTERPENETRATION ANALYSIS IN POLY(ACRYLIC ACID)-CONTAINING SYSTEMS , 1987 .

[51]  S. Dumitriu,et al.  Polycomponent Ophthalmic Inserts with Polysaccharide Support , 1988 .

[52]  M. Alonso,et al.  Improvement of Ocular Penetration of Amikacin Sulphate by Association to Poly(butylcyanoacrylate) Nanoparticles , 1991, The Journal of pharmacy and pharmacology.

[53]  Y. Rojanasakul,et al.  The effect of drug charge type and charge density on corneal transport , 1992 .

[54]  T. F. Patton,et al.  Importance of the noncorneal absorption route in topical ophthalmic drug delivery. , 1985, Investigative ophthalmology & visual science.

[55]  B. Khoobehi,et al.  Efficacy of liposome-bound amphotericin B for the treatment of experimental fungal endophthalmitis in rabbits. , 1989, Investigative ophthalmology & visual science.

[56]  J. Gottsch,et al.  Use of collagen corneal shields versus soft contact lenses to enhance penetration of topical tobramycin , 1988, Journal of cataract and refractive surgery.

[57]  S. Benita,et al.  Pilocarpine incorporated into a submicron emulsion vehicle causes an unexpectedly prolonged ocular hypotensive effect in rabbits. , 1994, Journal of ocular pharmacology.

[58]  M. Wiederholt,et al.  Pharmacokinetic of topical cyclosporin A in the rabbit eye. , 1986, Investigative ophthalmology & visual science.

[59]  A. Palomar,et al.  Absorption intra-oculaire du collyre cyclosporine A. , 1992 .

[60]  B. Khoobehi,et al.  INTRAVITREAL INJECTION OF LIPOSOME‐ENCAPSULATED GANCICLOVIR IN A RABBIT MODEL , 1987, Retina.

[61]  Gordon L. Amidon,et al.  Thermodynamic studies on the gel-sol transition of some pluronic polyols , 1984 .

[62]  M. F. Saettone,et al.  Semisolid ophthalmic vehicles. III. An evaluation of four organic hydrogels containing pilocarpine , 1986 .

[63]  Kuldeep Singh,et al.  Liposomal ophthalmic drug delivery system. II. Dihydrostreptomycin sulfate , 1984 .

[64]  D. Brant Solution Properties of Polysaccharides , 1981 .

[65]  R. Schoenwald Ocular drug delivery. Pharmacokinetic considerations. , 1990, Clinical pharmacokinetics.

[66]  J. Robinson,et al.  The effect of polyethylene glycol molecular weight on corneal transport and the related influence of penetration enhancers , 1992 .

[67]  K. Himmelstein,et al.  Modification of in situ gelling behavior of carbopol solutions by hydroxypropyl methylcellulose. , 1995, Journal of pharmaceutical sciences.

[68]  S. Almog,et al.  A submicron emulsion as ocular vehicle for delta-8-tetrahydrocannabinol: effect on intraocular pressure in rabbits. , 1992, Ophthalmic research.

[69]  I. Kellaway,et al.  Influence of molecular weight and formulation pH on the precorneal clearance rate of hyaluronic acid in the rabbit eye , 1995 .

[70]  K. Green,et al.  Influence of vehicle and anterior chamber protein concentration on cyclosporine penetration through the isolated rabbit cornea. , 1992, Current eye research.

[71]  S. Schwartz,et al.  Collagen shield delivery of amphotericin B. , 1990, American journal of ophthalmology.

[72]  J. Kelly,et al.  Relative bioavailability of pilocarpine from a novel ophthalmic delivery system and conventional eyedrop formulations. , 1989, The British journal of ophthalmology.

[73]  M. Borgers,et al.  Beta-cyclodextrins as vehicles in eye-drop formulations: an evaluation of their effects on rabbit corneal epithelium. , 1990, Lens and eye toxicity research.

[74]  M. Mezei,et al.  Liposomes—A selective drug delivery system for the topical route of administration: gel dosage form , 1982, The Journal of pharmacy and pharmacology.

[75]  D. Ayers,et al.  Polyacrylic acid mediated ocular delivery of ribozymes , 1996 .

[76]  D. Krohn,et al.  Liposomes in topical drug delivery. , 1982, Investigative ophthalmology & visual science.

[77]  T. O'brien,et al.  Collagen corneal shields enhance penetration of topical prednisolone acetate , 1989, Journal of cataract and refractive surgery.

[78]  P. Shek,et al.  Liposomes are effective carriers for the ocular delivery of prophylactics. , 1987, Biochimica et biophysica acta.

[79]  J. Szejtli,et al.  Medicinal Applications of Cyclodextrins , 1994, Medicinal research reviews.

[80]  J. Greaves,et al.  Scintigraphic assessment of an ophthalmic gelling vehicle in man and rabbit. , 1990, Current eye research.

[81]  V. H. Lee,et al.  Ocular drug bioavailability from topically applied liposomes. , 1985, Survey of ophthalmology.

[82]  J. Robinson,et al.  Mechanistic and quantitative evaluation of precorneal pilocarpine disposition in albino rabbits. , 1979, Journal of pharmaceutical sciences.

[83]  C. Cannet,et al.  [Comparative study of the antiglaucomatous activity of Glauplex 2 and pilocarpine nitrate on alpha-chymotrypsin-induced experimental glaucoma]. , 1982, Journal Francais d'Ophtalmologie.

[84]  S. Tseng,et al.  Paracellular permeability of corneal and conjunctival epithelia. , 1989, Investigative ophthalmology & visual science.

[85]  A. Ludwig,et al.  Influence of the Viscosity and the Surface Tension of Ophthalmic Vehicles on the Retention of a Tracer in the Precorneal Area of Human Eyes , 1988 .

[86]  A. Rozier,et al.  Gelrite®: A novel, ion-activated, in-situ gelling polymer for ophthalmic vehicles. Effect on bioavailability of timolol , 1989 .

[87]  Clive G. Wilson,et al.  A γ-scintigraphic evaluation of microparticulate ophthalmic delivery systems: liposomes and nanoparticles , 1987 .

[88]  R. W. Wood,et al.  Ocular disposition of poly-hexyl-2-cyano[3-14C]acrylate nanoparticles in the albino rabbit , 1985 .

[89]  S. Mishima Clinical pharmacokinetics of the eye. Proctor lecture. , 1981, Investigative ophthalmology & visual science.

[90]  Susan C. Miller,et al.  Effect of poloxamer 407 gel on the miotic activity of pilocarpine nitrate in rabbits , 1982 .

[91]  J. W. Shell Ocular Drug Delivery Systems - A Review , 1982 .

[92]  J. Gottsch,et al.  Use of collagen corneal shields in the treatment of bacterial keratitis. , 1988, American journal of ophthalmology.

[93]  J. Reidy,et al.  Cyclosporine-containing collagen shields suppress corneal allograft rejection. , 1990, American journal of ophthalmology.

[94]  C. Crosson,et al.  Beta-cyclodextrins enhance bioavailability of pilocarpine. , 1993, Current eye research.

[95]  A. Urtti,et al.  Improved ocular: systemic absorption ratio of timolol by viscous vehicle and phenylephrine. , 1990, Investigative ophthalmology & visual science.

[96]  H. Miichi,et al.  Assessment of ocular irritability of liposome preparations. , 1988, Journal of pharmacobio-dynamics.

[97]  S. P. Srinivas,et al.  Use of fluorometry in assessing the efficacy of a cation-sensitive gel as an ophthalmic vehicle: comparison with scintigraphy. , 1992, Journal of pharmaceutical sciences.

[98]  K. Dickstein,et al.  Comparison of the effects of aqueous and gellan ophthalmic timolol on peak exercise performance in middle-aged men. , 1996, American journal of ophthalmology.

[99]  A. Albertsson,et al.  Preparation and characterisation of poly(adipic anhydride) microspheres for ocular drug delivery , 1996 .

[100]  S. Jain,et al.  Polymeric pseudolatices bearing pilocarpine for controlled ocular delivery. , 1992, Journal of microencapsulation.

[101]  A. Rozier,et al.  Bioadhesion: The effect of polyacrylic acid on the ocular bioavailability of timolol , 1992 .

[102]  P. K. Sehgal,et al.  Collagen ophthalmic inserts for pilocarpine drug delivery system , 1988 .

[103]  L. Laroche,et al.  [Treatment of dry eye syndrome with lacrimal gel: a randomized multicenter study]. , 1991, Journal francais d'ophtalmologie.

[104]  Andreas Zimmer,et al.  Microspheres and nanoparticles used in ocular delivery systems , 1995 .

[105]  P. Sado,et al.  Release kinetics of liposome-encapsulated ganciclovir after intravitreal injection in rabbits. , 1996, Journal of microencapsulation.

[106]  P. Sado,et al.  Effect of cyclosporine A formulations on bovine corneal absorption: ex-vivo study. , 1997, Journal of microencapsulation.

[107]  R. Gurny Preliminary study of prolonged acting drug delivery system for the treatment of glaucoma. , 1981, Pharmaceutica acta Helvetiae.

[108]  V. Stella,et al.  The effect of a modified beta-cyclodextrin, SBE4-beta-CD, on the aqueous stability and ocular absorption of pilocarpine. , 1994, Current eye research.

[109]  J W Shell,et al.  Ophthalmic drug delivery systems , 1984, Survey of ophthalmology.

[110]  G. Peyman,et al.  Intravitreal liposome-encapsulated gentamicin in a rabbit model. Prolonged therapeutic levels. , 1986, Investigative ophthalmology & visual science.

[111]  G. Grass,et al.  Mechanisms of corneal drug penetration. II: Ultrastructural analysis of potential pathways for drug movement. , 1988, Journal of pharmaceutical sciences.

[112]  I. Kellaway,et al.  Pilocarpine bioavailability from a mucoadhesive liposomal ophthalmic drug delivery system , 1992 .

[113]  P. Couvreur,et al.  Antiglaucomatous activity of betaxolol chlorhydrate sorbed onto different isobutylcyanoacrylate nanoparticle preparations , 1990 .

[114]  H. Mayer,et al.  Efficacy of a novel hydrogel formulation in human volunteers. , 1996, Ophthalmologica. Journal international d'ophtalmologie. International journal of ophthalmology. Zeitschrift fur Augenheilkunde.

[115]  P. Couvreur,et al.  Physicochemical and morphological characterization of polyisobutyl cyanoacrylate nanocapsules. , 1986, Journal of pharmaceutical sciences.

[116]  Tomi Järvinen,et al.  Ocular absorption following topical delivery , 1995 .

[117]  J. K. Baird,et al.  PS-60: A New Gel-Forming Polysaccharide , 1981 .

[118]  Nikolaos A. Peppas,et al.  Pharmaceutical and Medical Aspects of Bioadhesive Systems for Drug Administration , 1988 .

[119]  D. Hughes,et al.  Mucus physiology and pathology , 1990 .

[120]  R. Gurny,et al.  In vivo evaluation of dosage forms: application of gamma scintigraphy to non-enteral routes of administration. , 1994, Journal of drug targeting.

[121]  J. Reidy,et al.  The collagen shield. A new vehicle for delivery of cyclosporin A to the eye. , 1990, Cornea.

[122]  J. Kreuter,et al.  Evaluation of pilocarpine-loaded albumin particles as controlled drug delivery systems for the eye. II. Co-administration with bioadhesive and viscous polymers , 1995 .

[123]  J. Robinson,et al.  Study of the mechanism of interaction of poly(ϵ-caprolactone) nanocapsules with the cornea by confocal laser scanning microscopy , 1994 .

[124]  V. H. Lee,et al.  Relative effectiveness of prodrug and viscous solution approaches in maximizing the ratio of ocular to systemic absorption of topically applied timolol. , 1988, Experimental eye research.

[125]  Y. Ali,et al.  Ion exchange resins for ophthalmic delivery. , 1994, Journal of ocular pharmacology.

[126]  M. F. Saettone,et al.  Vehicle effects on ophthalmic bioavailability: the influence of different polymers on the activity of pilocarpine in rabbit and man , 1982, The Journal of pharmacy and pharmacology.

[127]  Kuldeep Singh,et al.  Liposomal ophthalmic drug delivery system I. Triamcinolone acetonide , 1983 .

[128]  S. Ohno,et al.  Topical application of ciclosporin ophthalmic solution containing alpha-cyclodextrin in experimental uveitis. , 1991, Ophthalmologica. Journal international d'ophtalmologie. International journal of ophthalmology. Zeitschrift fur Augenheilkunde.

[129]  J. Robinson,et al.  Vehicle effects on ocular drug bioavailability II: Evaluation of pilocarpine. , 1977, Journal of pharmaceutical sciences.

[130]  D. Meisner,et al.  Liposome ocular delivery systems , 1995 .

[131]  Robert Gurny,et al.  PATENT LITERATURE REVIEW OF OPHTHALMIC INSERTS , 1995 .