Metapopulation inbreeding dynamics, effective size and subpopulation differentiation--A general analytical approach for diploid organisms.

[1]  O. Hössjer,et al.  A new general analytical approach for modeling patterns of genetic differentiation and effective size of subdivided populations over time. , 2014, Mathematical biosciences.

[2]  O. Hössjer,et al.  Quasi equilibrium, variance effective size and fixation index for populations with substructure , 2014, Journal of mathematical biology.

[3]  C. Kettle Fragmentation genetics in tropical ecosystems: from fragmentation genetics to fragmentation genomics , 2014, Conservation Genetics.

[4]  O. Hössjer On the eigenvalue effective size of structured populations , 2014, Journal of mathematical biology.

[5]  J. L. Gittleman,et al.  The biodiversity of species and their rates of extinction, distribution, and protection , 2014, Science.

[6]  G. Luikart,et al.  Effects of Overlapping Generations on Linkage Disequilibrium Estimates of Effective Population Size , 2014, Genetics.

[7]  Shankaracharya,et al.  Relationship Estimation from Whole-Genome Sequence Data , 2014, PLoS genetics.

[8]  Linda Laikre,et al.  Hunting Effects on Favourable Conservation Status of Highly Inbred Swedish Wolves , 2013, Conservation biology : the journal of the Society for Conservation Biology.

[9]  O. Hössjer,et al.  Quasi equilibrium approximations of the fixation index under neutrality: the finite and infinite island models. , 2013, Theoretical population biology.

[10]  F. Allendorf,et al.  How does the 50/500 rule apply to MVPs? , 2012, Trends in ecology & evolution.

[11]  Vladimir Vacic,et al.  The Variance of Identity-by-Descent Sharing in the Wright–Fisher Model , 2012, Genetics.

[12]  John Wakeley,et al.  Gene Genealogies Within a Fixed Pedigree, and the Robustness of Kingman’s Coalescent , 2012, Genetics.

[13]  O. Hössjer Coalescence theory for a general class of structured populations with fast migration , 2011, Advances in Applied Probability.

[14]  E. Pollak Coalescent theory for age-structured random mating populations with two sexes. , 2011, Mathematical biosciences.

[15]  P. England,et al.  Estimating Contemporary Effective Population Size on the Basis of Linkage Disequilibrium in the Face of Migration , 2011, Genetics.

[16]  Jinchuan Xing,et al.  Maximum-likelihood estimation of recent shared ancestry (ERSA). , 2011, Genome research.

[17]  R. Waples Spatial‐temporal stratifications in natural populations and how they affect understanding and estimation of effective population size , 2010, Molecular ecology resources.

[18]  John M. Noble,et al.  Bayesian Networks: An Introduction , 2009 .

[19]  R. Peterson,et al.  Congenital bone deformities and the inbred wolves (Canis lupus) of Isle Royale , 2009 .

[20]  B. Charlesworth Effective population size and patterns of molecular evolution and variation , 2009, Nature Reviews Genetics.

[21]  John Wakeley,et al.  Extensions of the Coalescent Effective Population Size , 2009, Genetics.

[22]  K. Strier Principles of Conservation Biology.Third Edition.ByMartha J Groom, Gary K Meffe,and, C Ronald Carroll.Sunderland (Massachusetts): Sinauer Associates.$89.95. xix + 779 p + 6 pl; ill.; index. ISBN: 0‐87893‐518‐5. 2006. , 2006 .

[23]  A. Bignert,et al.  Congenital defects in a highly inbred wild wolf population (Canis lupus) , 2006 .

[24]  R. Frankham Genetics and extinction , 2005 .

[25]  P. Jagers,et al.  The coalescent effective size of age-structured populations. , 2005, math/0508454.

[26]  R. Lande,et al.  Effective Size of a Fluctuating Age-Structured Population , 2005, Genetics.

[27]  O. Liberg,et al.  Severe inbreeding depression in a wild wolf Canis lupus population , 2005, Biology Letters.

[28]  Mikko J Sillanpää,et al.  Backward simulation of ancestors of sampled individuals. , 2005, Theoretical population biology.

[29]  Stephen M. Krone,et al.  On the Meaning and Existence of an Effective Population Size , 2005, Genetics.

[30]  Franclois Balloux HETEROZYGOTE EXCESS IN SMALL POPULATIONS AND THE HETEROZYGOTE‐EXCESS EFFECTIVE POPULATION SIZE , 2004, Evolution; international journal of organic evolution.

[31]  R. Masuda,et al.  Bottleneck Effects on the Sika Deer Cervus nippon Population in Hokkaido, Revealed by Ancient DNA Analysis , 2004, Zoological science.

[32]  L. Lehmann,et al.  Random mating with a finite number of matings. , 2003, Genetics.

[33]  L. Lehmann,et al.  The population genetics of clonal and partially clonal diploids. , 2003, Genetics.

[34]  P. Bentzen,et al.  Loss of genetic diversity in sea otters (Enhydra lutris) associated with the fur trade of the 18th and 19th centuries , 2002, Molecular ecology.

[35]  B. Charlesworth,et al.  Effective population size and population subdivision in demographically structured populations. , 2002, Genetics.

[36]  S. Wooding,et al.  The matrix coalescent and an application to human single-nucleotide polymorphisms. , 2002, Genetics.

[37]  R. Durrett Probability Models for DNA Sequence Evolution , 2002 .

[38]  E. Pollak Eigenvalue effective population numbers for populations that vary cyclically in size. , 2002, Mathematical biosciences.

[39]  T. Nagylaki Geographical invariance and the strong-migration limit in subdivided populations , 2000, Journal of mathematical biology.

[40]  B Derrida,et al.  On the genealogy of a population of biparental individuals. , 2000, Journal of theoretical biology.

[41]  Joseph T. Chang Recent common ancestors of all present-day individuals , 1999, Advances in Applied Probability.

[42]  Armando Caballero,et al.  Developments in predicting the effective size of subdivided populations , 1999, Heredity.

[43]  T. Nagylaki The expected number of heterozygous sites in a subdivided population. , 1998, Genetics.

[44]  M. Möhle Coalescent results for two-sex population models , 1998, Advances in Applied Probability.

[45]  J. Wakeley,et al.  Segregating sites in Wright's island model. , 1998, Theoretical population biology.

[46]  T. Nagylaki,et al.  Fixation indices in subdivided populations. , 1998, Genetics.

[47]  J. Wang Effective size and F-statistics of subdivided populations. II. Dioecious species. , 1997, Genetics.

[48]  J Wang,et al.  Effective size and F-statistics of subdivided populations. I. Monoecious species with partial selfing. , 1997, Genetics.

[49]  P Donnelly,et al.  The coalescent process with selfing. , 1997, Genetics.

[50]  M. Whitlock,et al.  The effective size of a subdivided population. , 1997, Genetics.

[51]  Jinliang Wang INBREEDING AND VARIANCE EFFECTIVE SIZES FOR NONRANDOM MATING POPULATIONS , 1996, Evolution; international journal of organic evolution.

[52]  S. Harrison,et al.  Genetic and evolutionary consequences of metapopulation structure. , 1996, Trends in ecology & evolution.

[53]  J. Wang Exact inbreeding coefficient and effective size of finite populations under partial sib mating. , 1995, Genetics.

[54]  Gary K. Meffe,et al.  Principles of Conservation Biology , 1995 .

[55]  A. Caballero,et al.  On the effective size of populations with separate sexes, with particular reference to sex-linked genes. , 1995, Genetics.

[56]  Armando Caballero,et al.  Developments in the prediction of effective population size , 1994, Heredity.

[57]  O. Rhodes,et al.  Effective sizes for subdivided populations. , 1993, Genetics.

[58]  W. G. Hill,et al.  A NOTE ON THE INBREEDING EFFECTIVE POPULATION SIZE , 1992, Evolution; international journal of organic evolution.

[59]  W. G. Hill,et al.  Effective size of nonrandom mating populations. , 1992, Genetics.

[60]  M. Slatkin Inbreeding coefficients and coalescence times. , 1991, Genetical research.

[61]  R. Chesser,et al.  Influence of gene flow and breeding tactics on gene diversity within populations. , 1991, Genetics.

[62]  R. Chesser,et al.  Gene diversity and female philopatry. , 1991, Genetics.

[63]  E. Pollak,et al.  On the theory of partially inbreeding finite populations. I. Partial selfing. , 1988, Genetics.

[64]  J. Crow,et al.  INBREEDING AND VARIANCE EFFECTIVE POPULATION NUMBERS , 1988, Evolution; international journal of organic evolution.

[65]  T. Nagylaki The robustness of neutral models of geographical variation , 1983 .

[66]  Warren J. Ewens,et al.  On the concept of the effective population size , 1982 .

[67]  William G. Hill,et al.  Estimation of effective population size from data on linkage disequilibrium , 1981 .

[68]  T. Nagylaki,et al.  The strong-migration limit in geographically structured populations , 1980, Journal of mathematical biology.

[69]  D. Simberloff,et al.  Conservation Biology: An Evolutionary-Ecological Perspective , 1980 .

[70]  W. G. Hill,et al.  A note on effective population size with overlapping generations. , 1979, Genetics.

[71]  T. H. Emigh,et al.  Fixation probabilities and effective population numbers in diploid populations with overlapping generations , 1979 .

[72]  C. Cannings,et al.  Probability functions on complex pedigrees , 1978, Advances in Applied Probability.

[73]  D. Johnson Inbreeding in populations with overlapping generations. , 1977, Genetics.

[74]  M. Nei,et al.  F‐statistics and analysis of gene diversity in subdivided populations , 1977, Annals of human genetics.

[75]  M. Nei,et al.  Mean and variance of FST in a finite number of incompletely isolated populations. , 1977, Theoretical population biology.

[76]  J. Sved,et al.  Migration and mutation in stochastic models of gene frequency change , 1977, Journal of mathematical biology.

[77]  S. Sawyer Results for the Stepping Stone Model for Migration in Population Genetics , 1976 .

[78]  M. Nei,et al.  MOLECULAR POPULATION GENETICS AND EVOLUTION , 1976 .

[79]  S. I. Rubinow,et al.  Some mathematical problems in biology , 1975 .

[80]  M. Nei Analysis of gene diversity in subdivided populations. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[81]  C. Cockerham,et al.  Analyses of gene frequencies. , 1973, Genetics.

[82]  M. Kimura,et al.  An introduction to population genetics theory , 1971 .

[83]  J. Felsenstein,et al.  Inbreeding and variance effective numbers in populations with overlapping generations. , 1971, Genetics.

[84]  M. Kimura,et al.  Theoretical foundation of population genetics at the molecular level. , 1971, Theoretical population biology.

[85]  T. Maruyama,et al.  Effective number of alleles in a subdivided population. , 1970, Theoretical population biology.

[86]  C. Cockerham,et al.  VARIANCE OF GENE FREQUENCIES , 1969, Evolution; international journal of organic evolution.

[87]  S. Wright THE INTERPRETATION OF POPULATION STRUCTURE BY F‐STATISTICS WITH SPECIAL REGARD TO SYSTEMS OF MATING , 1965 .

[88]  S. Wright,et al.  Isolation by Distance. , 1943, Genetics.

[89]  O. Hössjer,et al.  Quasi equilibrium, variance effective population size and fixation index for models with spatial structure , 2012 .

[90]  R. Frankham,et al.  Pragmatic population viability targets in a rapidly changing world , 2010 .

[91]  M. Slatkin Inbreeding coefficients and coalescence times. , 2007, Genetical research.

[92]  G. A NOTE ON EFFECTIVE POPULATION SIZE WITH OVERLAPPING GENERATIONS , 2003 .

[93]  F. Allendorf,et al.  The role of genetics in population viability analysis , 2002 .

[94]  Stephen M. Krone,et al.  Separation of time scales and convergence to the coalescent in structured populations ∗ , 2001 .

[95]  H. Herbots The Structured Coalescent. , 1997 .

[96]  T. Nagylaki The inbreeding effective population number in dioecious populations. , 1995, Genetics.

[97]  M. Notohara,et al.  The strong-migration limit for the genealogical process in geographically structured populations , 1993 .

[98]  R. Chakraborty Analysis of Genetic Structure of Populations: Meaning, Methods, and Implications , 1993 .

[99]  M. Notohara,et al.  The coalescent and the genealogical process in geographically structured population , 1990, Journal of mathematical biology.

[100]  G. A. Leng ON POPULATION. , 1963, Singapore medical journal.

[101]  S WRIGHT,et al.  Genetical structure of populations. , 1950, Nature.

[102]  S. Wright,et al.  Evolution in Mendelian Populations. , 1931, Genetics.

[103]  G. McVean,et al.  The coalescent , 2022 .