Local and Parallel Finite Element Algorithms Based on the Partition of Unity for the Stokes Problem
暂无分享,去创建一个
Feng Shi | Haibiao Zheng | Jiaping Yu | Haibiao Zheng | F. Shi | Jiaping Yu
[1] I. Babuska,et al. The Partition of Unity Method , 1997 .
[2] Lina Song,et al. Adaptive Local Postprocessing Finite Element Method for the Navier-Stokes Equations , 2013, J. Sci. Comput..
[3] Yanren Hou,et al. Postprocessing Fourier Galerkin Method for the Navier-Stokes Equations , 2009, SIAM J. Numer. Anal..
[4] J. Melenk. The Partition of Unity MethodI , 1996 .
[5] Douglas N. Arnold,et al. Local error estimates for finite element discretization of the Stokes equations , 1995 .
[6] Lutz Tobiska,et al. A Two-Level Method with Backtracking for the Navier--Stokes Equations , 1998 .
[7] Jinchao Xu. Two-grid Discretization Techniques for Linear and Nonlinear PDEs , 1996 .
[8] Jinchao Xu,et al. Local and parallel finite element algorithms for the stokes problem , 2008, Numerische Mathematik.
[9] Chunxiong Zheng,et al. Partition of unity refinement for local approximation , 2011 .
[10] H. K. Lee,et al. Numerical Solution of the Stationary Navier-Stokes Equations Using a Multilevel Finite Element Method , 1998, SIAM J. Sci. Comput..
[11] M. Marion,et al. Nonlinear Galerkin methods and mixed finite elements: two-grid algorithms for the Navier-Stokes equations , 1994 .
[12] Michael J. Holst,et al. A New Paradigm for Parallel Adaptive Meshing Algorithms , 2000, SIAM J. Sci. Comput..
[13] Yanren Hou,et al. Local and parallel finite element algorithms for time-dependent convection-diffusion equations , 2009 .
[14] M. Holst. Applications of Domain Decomposition and Partition of Unity Methods in Physics and Geometry , 2010, 1001.1364.
[15] Yanren Hou,et al. An AIM and one-step Newton method for the Navier–Stokes equations☆ , 2001 .
[16] Michel Fortin,et al. Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.
[17] I. Babuska,et al. The partition of unity finite element method: Basic theory and applications , 1996 .
[18] Vivette Girault,et al. Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.
[19] Michael J. Holst,et al. Adaptive Numerical Treatment of Elliptic Systems on Manifolds , 2001, Adv. Comput. Math..
[20] Jinchao Xu,et al. Local and parallel finite element algorithms based on two-grid discretizations , 2000, Math. Comput..
[21] Yinnian He,et al. Newton Iterative Parallel Finite Element Algorithm for the Steady Navier-Stokes Equations , 2010, J. Sci. Comput..
[22] M. Larson,et al. Adaptive variational multiscale methods based on a posteriori error estimation: Energy norm estimates for elliptic problems , 2007 .
[23] Max Gunzburger,et al. Finite Element Methods for Viscous Incompressible Flows: A Guide to Theory, Practice, and Algorithms , 1989 .
[24] Jinchao Xu,et al. Iterative Methods by Space Decomposition and Subspace Correction , 1992, SIAM Rev..