Recognition of Robinsonian dissimilarities

We present an O(n3)-time, O(n2)-space algorithm to test whether a dissimilarity d on an n-object set X is Robinsonian, i.e., X admits an ordering such that i≤j≤k implies that d(xi,xk)≥max {d(xi,xj),d(xj,xk)}.RésuméNous présentons un algorithme de complexité O(n3) pour le temps et O(n2) pour l’espace mémoire, afin de tester si une dissimilarité d sur un ensemble X de n objets est de Robinson, i.e., si X admet un ordre tel que i≤j≤k entraîne d(xi,xk)≥max {d(xi,xj),d(xj,xk)}.

[1]  P. Bertrand,et al.  Propriétés et caractérisations topologiques d'une représentation pyramidale , 1992 .

[2]  E. Diday Croisements, ordres et ultramétriques , 1983 .

[3]  Edwin Diday,et al.  Orders and overlapping clusters by pyramids , 1987 .

[4]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[5]  Kellogg S. Booth,et al.  Testing for the Consecutive Ones Property, Interval Graphs, and Graph Planarity Using PQ-Tree Algorithms , 1976, J. Comput. Syst. Sci..

[6]  Carole Durand-Lepoivre Ordres et graphes pseudo-hiérarchiques : théorie et optimisation algorithmique , 1989 .

[7]  Lawrence Hubert,et al.  SOME APPLICATIONS OF GRAPH THEORY AND RELATED NON‐METRIC TECHNIQUES TO PROBLEMS OF APPROXIMATE SERIATION: THE CASE OF SYMMETRIC PROXIMITY MEASURES , 1974 .

[8]  Boris Mirkin,et al.  Mathematical Classification and Clustering , 1996 .

[9]  Frank Critchley,et al.  The partial order by inclusion of the principal classes of dissimilarity on a finite set, and some of their basic properties , 1994 .

[10]  Gildas Brossier,et al.  Représentation ordonnée des classifications hiérarchiques , 1980 .

[11]  Sergey N. Rodin,et al.  Graphs and Genes , 1984 .

[12]  D. Kendall Incidence matrices, interval graphs and seriation in archeology. , 1969 .

[13]  D. R. Fulkerson,et al.  Incidence matrices and interval graphs , 1965 .

[14]  M. Golumbic Algorithmic graph theory and perfect graphs , 1980 .

[15]  W. S. Robinson A Method for Chronologically Ordering Archaeological Deposits , 1951, American Antiquity.